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Prediction of anticancer drug 
sensitivity using an interpretable model 

guided by deep learning
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Abstract of project 

1. Introduction

• Object

- Prediction of cancer treatment response is an important topic in clinical and pharmacological research, as 

people expect it to customize effective treatment plans for individual patients.

- However, (1) due to tumor heterogeneity, patients with the same tumor type may have different treatment 

responses → it making drug selection important.

(2) Most deep learning models are black boxes, making it difficult to understand the underlying mechanisms 

of drug therapy → it is challenging to explain the relationship between network models and cellular 

molecular feature functions without understanding or paying attention to the biological mechanisms 

behind the predicted results.
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Therefore, it is imperative to establish an interpretable model that receives various cell line and drug 

feature data to learn drug response mechanisms and achieve stable predictions between available datasets.



Abstract of project 

1. Introduction

• Object

- So, this study proposes DrugGene, a new interpretable deep learning model.
- DrugGene integrates (1)gene expressions, (3)gene mutations, (2)copy number variations(CNV) of cancer

cells, and (4)chemical characteristics of anticancer drugs to predict their sensitivity.

→ in order to predict their sensitivity. 

- Also, they employ two branches model: a visual neural network (VNN) that models the hierarchical 

structure of biological subsystems, and a traditional artificial neural network (ANN)

→ in order to capture the chemical structural features of drugs for establishing interpretable model . 
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1. Introduction

• Key points

- Enhancing the interpretability of the model and understanding the molecular pathways that control or 

reflect drug sensitivity can help determine which cancer patients should receive treatment and which 

specific drugs have actual positive catalytic effects.

- Utilizing biological pathways to construct neural networks, which can use genotypes to monitor changes in 

the state of network subsystems, can help interpret the prediction results in the model and achieve 

satisfactory prediction accuracy.
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Why this study need?

→ So, using proposed approach, we can help explore new directions in cancer treatment.



2.   Materials & methods
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Materials  
< Datasets >

● From Cancer Treatment Response Portal (CTRP)
1. Links genetic and cellular characteristics with drug sensitivity.

2. Morgan fingerprint *SMILES notation based on the drug names provided in the dataset.

● From Cancer Drug Sensitivity Genome (GDSC)

1. Provides genomic data for cancer cell lines. (gene mutation, gene expression, gene copy number variation)

2. Morgan fingerprint  *SMILES notation based on the drug names provided in the dataset.

● From Cancer Cell Line Encyclopedia (CCLE)

1. Provides genomic data for cancer cell lines. (gene mutation, gene expression, gene copy number variation)
● Gene Ontology (GO)

1. information on molecular function, cellular components, and biological processes
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2-1. Materials



How to get data ?  
< From Cancer Treatment Response Portal (CTRP)>

1. Dataset Composition:
a. Drugs: 684
b. Cell Lines: 942
c. Cell Line-Drug Pairs: 8969

2. Target Value: Area Under the Dose-Response Curve (AUC), which measures the effectiveness of a drug 

on a specific cell line.(On the x-axis, plot the concentrations, and on the y-axis, plot the response rates. 

Connect these points to form a curve.)
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2-1. Materials

*This setup helps researchers identify which drugs are most effective for specific cancer types, 
facilitating personalized cancer treatment development

● Example:
● Anticancer Drug A is tested on Breast Cancer Cell Line X.
● The dose-response relationship is measured and graphed.
● The AUC is calculated from this graph, indicating the drug's effectiveness on this cell line.

: links the genetic, lineage, and other cellular characteristics of cancer cell lines with small molecule sensitivity



How to get data ?  
< From Cancer Treatment Response Portal (CTRP)>

1. Dataset Composition:
a. Drugs: 684
b. Cell Lines: 942
c. Cell Line-Drug Pairs: 8969

2. Target Value: Area Under the Dose-Response Curve (AUC), which measures the effectiveness of a drug 

on a specific cell line.(On the x-axis, plot the concentrations, and on the y-axis, plot the response rates. 

Connect these points to form a curve.)

10

2-1. Materials

*This setup helps researchers identify which drugs are most effective for specific cancer types, 
facilitating personalized cancer treatment development

● Example:
● Anticancer Drug A is tested on Breast Cancer Cell Line X.
● The dose-response relationship is measured and graphed.
● The AUC is calculated from this graph, indicating the drug's effectiveness on this cell line.



How to get data ?  

< From GDSC & CTRP>

- Compound Data: From GDSC and CTRP, converted to SMILES notation

< From GDSC & CTRP>

- Genomic Data: From CCLE and GDSC, including:
a. Gene mutation data
b. Gene expression level data
c. Gene copy number data

< From GO>
- Selected Information: 2086 biological processes for model branch modeling.

→ To enhance the understanding of molecular functions and biological processes in cancer research.
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2-1. Materials

* SMlLES : notation for representing the structure of a 
chemical in ASCII sentences.
→ Complex chemicals can be described in a single line.
ex) CO2 : O=C=O, hydrogen cyanide(HCN) : C#N



How to get data ?  
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2-1. Materials

+ < Data preprocessing >

Drug Data Preprocessing
- Software: alvaDesc, RDKit.
- Process:

- Molecular descriptors and Morgan fingerprint 
encoding.

- Decomposition into molecular fragments 
represented as a 2048-bit vector.

Genomic Data Preprocessing
- Gene Selection: Top 15% most commonly 

mutated genes (3008 genes).
- Handling Missing Data: Average genotype data 

used to replace missing data.
- Encoding:

- Gene mutations: One-hot encoding.
- Gene expression and copy number 

variation: Normalization to 0-1 range.

*Finally, combine medicinal chemistry characteristics 
and cancer cell lines to ensure the data format 
conforms to deep learning model specifications.
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About model architecture
2-2. Methods

Step1

Step3

Step2
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About model architecture
2-2. Methods

Step1 ) Visual Neural Network (VNN)
Step2)  Artificial Neural Network (ANN)

Visual Neural Network (VNN):
- Models hierarchical structure of molecular subsystems in cancer cells.

Inputs: Gene mutation, gene expression, and gene copy number 
variation data.

- Data is fused into a new matrix without changing dimensions for VNN 
input.

Artificial Neural Network (ANN):
- Inputs: Morgan fingerprint encoding for drugs.

Training and Integration:
- VNN and ANN sub-models are trained independently during the 

training phase.
- Outputs are combined into a neuron layer.

→ Final output: Predicted drug sensitivity response.

▪ Two-branch model



Step 1) VNN (Visual neural network)

2-2. Methods
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Step 1) VNN (Visual neural network)

2-2. Methods
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1. Hierarchical Structure Modeling:
● Based on Gene Ontology database.
● Constructs cellular subsystems using 2086 biological processes.
● Subsystems are nodes in a neural network connected through hierarchical 

relationships.

▪ VNN

*Subsystem Representation:

➔ Neurons represent the functional state of each subsystem.
➔ Connectivity follows the hierarchical structure from small reactions 

to overall cell functions.
➔ Neurons receive input from child nodes and send output to parent 

nodes.



Step 1) VNN (Visual neural network)2-2. Methods
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Network Design:

● 2086 subsystems with a maximum depth of six layers.
● Bridges genotype changes to cell activity or drug sensitivity.

step 1) Genomic Data Input:

➔ Includes gene mutations, gene expression, and gene copy number variation.
➔ Data represented by 3008-length two-dimensional tensors.

* selected the top 15% of genes most commonly mutated in human cancer based on CCLE and the 
genes annotated in the GO database

➔ Tensors are merged, normalized, and scaled between 0 and 1.



Step 1) VNN (Visual neural network)2-2. Methods
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step 2)  Encoding:

➔ Gene mutations converted from binary to Gray code to minimize errors.
*Gray code : a binary numeral system where two successive values differ in only one bit.
→ This property is useful for minimizing errors during the transition between consecutive values, which 
is beneficial in applications like digital encoding and error correction.

Conversion Process:

1. Binary to Gray Code Conversion:
○ The first bit of the Gray code is the same as the first bit of the 

binary number.
○ Each subsequent Gray code bit is found by XORing the current 

binary bit with the previous binary bit.
2. For example, converting the binary number 0100 (decimal 4) to Gray 

code:
○ First bit: 0 (same as the first bit of the binary number)
○ Second bit: 1 (XOR of the first and second binary bits: 0 ^ 1 = 1)
○ Third bit: 1 (XOR of the second and third binary bits: 1 ^ 0 = 1)
○ Fourth bit: 0 (XOR of the third and fourth binary bits: 0 ^ 0 = 0)

3. Result: 0100 (binary) -> 0110 (Gray code)



Step 1) VNN (Visual neural network)2-2. Methods
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→ Gene perturbations propagate through the hierarchical structure of subsystems, 
leading to functional changes and predictive responses in cell activity.

→ Embedding the structure of deep neural networks into the biological hierarchy 
allows VNN to monitor changes in network subsystems, interpret prediction 
results, and improve model performance.



Step 1) VNN (Visual neural network)

2-2. Methods
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step 3) Training Process:

● Minimizes objective function, initializes weights between -0.01 and 0.01.
● Uses Batch Normalization to reduce internal covariate shifts caused by different weight scales.
● We set the training dataset to D = {(X1, Y1), ... ,(XN , YN )}, where N is the number of samples, for each 

sample i,Xi ∈ R^M represents genotype through a binary vector of states on M genes, and Yi ∈ R is a 
numerical value representing the observed drug response.

● The multidimensional state of each subsystem t  is represented by the output vector Oi(t), denoted by a 
linear function of all its subsystems and annotated gene states, connected to the input vector Vi(t).

* BatchNormalization () :  a regularization of model weights, which can solve gradient vanishing and reduces          
traditional drop out steps in deep learning 

*Tanh :  a nonlinear transformation hyperbolic tangent function.



Step 1) VNN (Visual neural network)

2-2. Methods
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step 3) Training Process:

● Then ,  perform the training process by minimizing the objective function:

* Loss () :  the squared error loss function, and r is the root of the hierarchy. 
Oi(r) :  the output of the root 
Oi(t) : the output of other subsystems. 
α: selecting appropriate learning rate parameters

● ADAM optimizer with batch size of 10,000.
● Learning rate determined through grid search (10⁻¹ to 10⁻⁴).
● Standard backpropagation for gradient calculation.



Step 1) VNN (Visual neural network)

2-2. Methods
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step 4) Model Output:

● Represents the embedding state of the entire cell.
● Predicts drug sensitivity responses.

⇒ Enhances interpretability by embedding neural network structure into biological hierarchy.



Step 2) ANN (Artificial Neural Network )

2-2. Methods

23



2-2. Methods

24

Network Design:

● Three layers with a specific number of neurons in each layer.
● Processes high-dimensional drug data encoded by Morgan fingerprints to 

predict drug sensitivity.

step 1) Drug data Input:

➔ Encoding: Morgan molecular fingerprint code.
➔ Representation: 2048-length binary vectors.
➔ Input Format: Each element represents an activation state 

(0 = inactive, 1 = activated).

Step 2) ANN (Artificial Neural Network )



2-2. Methods
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Step 2) ANN (Artificial Neural Network )

Step 2) Training Process:

● Objective: Minimize the loss function by adjusting weights and biases.
* X : features or known conditions

Y : labels or results
W : weight vector
Y : labels or results
b : bias

basic formula :

* p{Y } : numerical value representing the predicted    
value of the sample

t{Y } :  numerical value representing the true value.

loss function :

➔ The goal is to make the predicted value p{Y } as close as possible to the true value t{Y }.
➔ Loss function is to minimize the sum of the loss values of a neural network as much as 

possible.
➔ Training should be terminated and the parameters of the trained neural network saved 

when the loss function reaches a certain convergence threshold



2-2. Methods

26

Step 2) ANN (Artificial Neural Network )

Step 3) Data Propagation:

● Input Layer: Receives the Morgan fingerprint encoding.
● Hidden Layers: Data propagates through layers, neurons process the input.
● Output Layer: Generates an embedded representation of the drug's chemical structure.

Step 4) Prediction Output:

● Result: Final layer provides the prediction output for drug sensitivity.



2-2. Methods
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Step 3) Full connection between 
VNN and ANN

Input Data: Output vectors from VNN and ANN.

● VNN: Generates genotypic embeddings.
● ANN: Generates medicinal chemistry structural embeddings.

→ Fully connected layer (with concatenate)  combines these embeddings to establish a complete 
model network.

Vector Concatenation: Combine the output vectors from VNN and ANN to create a new high-
dimensional vector.

Fully Connected Layer: Use the combined vector as input to generate the prediction results.

Final Output:

➔ Area Under the Curve (AUC) of the normalized dose-response curve.
➔ AUC=0: Indicates complete cell killing , AUC=1: Indicates no effect.



3. Results
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3. Results

Most points are shifted more towards the Y-axis, meaning the DrugGene model has a higher correlation with the 
actual values compared to the other model.  → This suggests that DrugGene has better predictive performance.

Most points are clustered around the diagonal line, indicating that the correlations of the DrugGene and expBox 
models with the actual values are similar. → However, the points are more often above the diagonal, suggesting 
that DrugGene generally has a slightly better predictive performance. 29

To compare its performance against current models on the same dataset
→ so let’s evaluates the predictive accuracy of DrugGene using a tenfold cross-validation method

Training: 684 drugs, 942 cell lines, 8969 cell line-drug pairs. , Testing: Same cell line-drug pairs to evaluate models.

1) Performance evaluation of DrugGene 
in predicting drug sensitivity 



3. Results

DrugGene can effectively improve the prediction results by integrating gene mutation, gene expression, gene 
copy number variation, and Medicinal chemistry characteristics.
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To compare its performance against current models on the same dataset
→ so let’s evaluates the predictive accuracy of DrugGene using a tenfold cross-validation method

Training: 684 drugs, 942 cell lines, 8969 cell line-drug pairs. , Testing: Same cell line-drug pairs to evaluate models.

1) Performance evaluation of DrugGene 
in predicting drug sensitivity 

*expBox: only uses gene 
expression and medicinal 
chemistry features

*DrugCell: uses gene 
mutations and drug 
characteristics for drug 
sensitivity prediction

*elastic network (EN)*cnvBox: only uses copy 
number variation and 
drug coding data



3. Results

DrugGene’s predictive correlation is significantly higher than the competitor models, which have relatively close 
median values.
MSE results infer that our method has the best predictive performance, followed by DrugCell.
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To compare its performance against current models on the same dataset
→ so let’s evaluates the predictive accuracy of DrugGene using a tenfold cross-validation method

1) Performance evaluation of DrugGene 
in predicting drug sensitivity 

0.11 0.14 0.17 0.21 0.27 0.23 0.33



3. Results

They  plotted a visual scatter using the predicted values of DrugGene and DrugCell on the test set, revealing that 
DrugGene has a better fitting performance than DrugCell.
The predicted results of the model can reflect the therapeutic effects of specific targeted drugs 32

To compare its performance against current models on the same dataset
→ so let’s evaluates the predictive accuracy of DrugGene using a tenfold cross-validation method

1) Performance evaluation of DrugGene 
in predicting drug sensitivity 

Top Performing Drugs:

● Teniposide: Highest prediction 
accuracy, used to treat acute 
lymphocytic leukemia in children.

● Vincristine: Second highest 
prediction accuracy, used as a 
clinical anti-tumor drug, especially 
for treating acute leukemia in 
children.

: top ten drugs with the highest 
prediction accuracy.



2) Learning the mechanisms of drug reactions 
through DrugGene

3. Results
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After evaluating DrugGene’s predictive ability based on the treatment response of each drug
→ let’s discuss the model’s interpretability

Analysis of Drug Sensitivity:

Two main components from genotype data are visualized.

● Fig. 5A: Points represent cell lines, colored by BRAF expression 
levels (red for high, gray for low).

● Result: High BRAF expression levels promote sensitivity to the 
MEK inhibitor selumetinib (Fig. 5B).

● AUC Values: Smaller AUC values indicate sensitivity, higher values 
indicate resistance.

● Conclusion: Sensitive cell lines (Fig. 5B) correspond to red dots 
(high BRAF) in Fig. 5A.

The two-dimensional visualization results of each cell line can be intuitively observed by extracting the two main 
components from all genotype data generated by VNN.
Two-dimensional visualization shows that high BRAF expression levels correlate with sensitivity to the MEK inhibitor 
selumetinib →  find that Selumetinib is an inhibitor for BRAF mutations in clinical treatment



2) Learning the mechanisms of drug reactions 
through DrugGene

3. Results
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After evaluating DrugGene’s predictive ability based on the treatment response of each drug
→ let’s discuss the model’s interpretability

Analysis of Drug Resistance:

● Fig. 5C: Points colored by EGFR or BRAF expression levels.
● Result: High EGFR or BRAF expression levels confer 

resistance to the BET family inhibitor JQ1 (Fig. 5D).
● Conclusion: Resistant cell lines (Fig. 5D) correspond to red 

dots (high EGFR or BRAF) in Fig. 5C.

They  also analyze the interpretability of the model when the cell lines exhibit drug resistance. Figure 5C distinguishes 
the distribution of EGFR or BRAF expression levels.
For EGFR or BRAF, high expression levels can confer resistance to the BET family inhibitor JQ1 (Fig. 5D).
The points presented as drug resistance mostly correspond to the red points in Fig. 5C. In clinical treatment, JQ1 is 
often used as an inhibitor for EGFR or BRAF mutations.



2) Learning the mechanisms of drug reactions 
through DrugGene

3. Results
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➔ Selected two main components from ANN embeddings.
➔ Each point represents a drug.
➔ Drugs are layered based on targeted genes' mechanisms of 

action.
➔ Clustering phenomenon observed for different targeted genes.

Key Target Genes:

● Notable clustering for BRAF, BRD4, and PARP.

→ These drugs act as inhibitors for their respective genes in 
clinical trials.

DrugGene distinguishes key features leading to drug sensitivity and resistance.
In summary, DrugGene is able to distinguish key features of genotypes that lead to drug sensitivity and resistance, as 

well as understand the chemical structural characteristics of drug biological activity

After evaluating DrugGene’s predictive ability based on the treatment response of each drug
→ let’s discuss the model’s interpretability



3) The role of subsystems in neural networks3. Results
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To further explore the effectiveness of identifying key subsystems using VNN’s genotypic output, we
→ so let’s performed ablation experiments by evaluating the predictive performance of subsystems using different metrics

: 2D visualization of VNN with key pathways highlighted in red 
: Plot of top 10% 

subsystems by RLIPP 
score 

: Phagocytosis subsystem’s 
effectiveness in distinguishing 

sensitivity (low AUC) and 
resistance (high AUC) to 

paclitaxel 



3) The role of subsystems in neural networks3. Results
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To further explore the effectiveness of identifying key subsystems using VNN’s genotypic output, we
→ so let’s performed ablation experiments by evaluating the predictive performance of subsystems using different metrics

: Plot of top 10% 
subsystems by RLIPP score 

B. RLIPP Score

● Purpose: Evaluate the performance of subsystems 
based on predicted drug response of parent node 
relative to child node in VNN.

● Method: Used neuron values representing states of 
parent and child nodes to predict drug response. The 
Pearson correlation coefficient between predicted 
values and actual target values was used to compute 
RLIPP.

● : Higher RLIPP scores indicate subsystems with better 
predictive performance.

*  P1 :Pearson correlation 
coefficient predicted by the child 
node

P2 :  predicted result of the 
parent node.RLIPP score indicates the importance of the parent–child system during 

prediction.
We chose paclitaxel to react with cells and used the RLIPP score to 
evaluate the important subsystems in this reaction process (Fig. 7B).

*Top Subsystems:

➔ Phagocytosis
➔ Mitochondrial RNA 

processing
➔ Organic substance 

transport
➔ Dephosphorylation 

response



3) The role of subsystems in neural networks3. Results
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To further explore the effectiveness of identifying key subsystems using VNN’s genotypic output, we
→ so let’s performed ablation experiments by evaluating the predictive performance of subsystems using different metrics

: Phagocytosis subsystem’s 
effectiveness in distinguishing 

sensitivity (low AUC) and resistance 
(high AUC) to paclitaxel 

In the reaction process of paclitaxel, we used the state changes of the subsystems with the highest scores to represent the 
predicted values of drug reactions  → found that the higher-ranked Phagocytosis subsystem could distinguish the sensitivity and 
resistance of cell lines reacting with paclitaxel (Fig. 7C).
The lower the AUC value, the more sensitive the response, while the opposite indicates the drug resistance response.



4. Conclusion 
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Conclusion  
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4. Conclusion 

Results show that

- The DrugGene method integrates reference data from cell lines and drugs, utilizing partial reference 
information to align with practical clinical practice. 

- It incorporates gene ontology data to construct part of the network, making the model interpretable. 
- The method achieves satisfactory drug sensitivity prediction accuracy, which helps in reducing medical 

costs, analyzing new cancer drug treatment strategies, and supporting cancer immunotherapy.

Novelties in their model

1) Enhances model interpretability.
2) Achieves accurate drug sensitivity prediction.
3) Reduces medical costs.
4) Aids in analyzing new cancer drug treatment strategies.
5) Supports cancer immunotherapy.

→ This approach provides a great predictive power of anti-cancer drug responses, together with an insight of 
the potential reactions between cell lines and drugs.



Thank you for listening ☺
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