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Introduction

* In recent years, deep learning (DL) has been widely used to analyze high—dimensional
biological omics data, especially single—cell RNA sequencing.

* In contrast to linear methods, such as principal component analysis (PCA), non-linear
models can capture more complex patterns in the data.

* One example of an unsupervised DL model that performs dimensionality reduction is
the autoencoder (AE), which consists of 2 neural networks; an encoder and a decoder.

« A more recent variant of the AE is the variational autoencoder (VAE), which learns a
probability distribution over the latent vectors of the data and thus belongs to the class
of generative models.
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Introduction

* AE-based methods have successfully been applied in various ways:
* cancer classification
 data integration
 data denolising
* batch correction
* cell clustering
* multi—-domain translation
* prediction of drug treatment effects on single—cells

* However, in contrast to PCA, AE-based approaches lack interpretability as we cannot
easily assign feature contributions to the latent vectors due to their non—linear nature.




* [Previous Methods 1] Different approaches have already been used to tackle the problem of
limited interpretability by modifying the neural network structure.

1. Tybalt tries to extract a biologically meaningful latent space by examining how different
latent vectors separate covariates and then investigating the associated gene weights of
the latent vectors of interest in the one—layer decoder.

2. In the LDVAE model, a linear decoder has been implemented to allow the assignment of
feature weights to the different latent vectors.

3. In the VEGA model, the authors used a one-layer,
sparse decoder that connects the latent variables to a
set of annotated genes.

* One limitation of these models is the simplicity of the
structure, which does not allow the incorporation of more
complex, hierarchical biological information.
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* [Previous Methods 2] Other methods have been aiming at incorporating hierarchical
biological networks into a neural network.

1. DCell is structured based on part of Gene Ontology (GO) to predict growth rates in
yeast and the impact of double mutants on biological processes.

2. Gene Ontology Autoencoder (GOAE) implements GO terms in one hidden layer of
encoder and decoder by partial connectivity to the input and output layer.

3. Deep GONet is a neural network classifier that imposes regularization on its weights
to encourage the establishment of connections that mirror the GO-directed acyclic
graph (DAG) and has been used to combine cancer classification with biological
explanations.

* However, no attempts have yet been made to incorporate full hierarchical biological
networks into a VAE to capture the different levels of description of biological
processes In tasks that go beyond classification.
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« OntoVAE (Ontology guided VAE) is a novel flexible VAE structure with a multi-layer,
sparse decoder that allows for the incorporation of any kind of hierarchical biological
information encoded as an ontology.

* OntoVAE provides direct interpretability in its latent space and decoder, as the
activities of the neurons now correspond to activities of biological processes or
phenotypes. This allows users to try different terms and monitor their activity changes,
without the need to preselect specific processes.

* Importantly, OntoVAE can be used for predictive modeling. By OntoVAE we can
modulate the values of input features in silico and then monitor how these changes
propagate through the network. This allows to simulate the effects of drug treatment
or genetic alterations.

* The investigation of subsequent alterations in the activation of hidden nodes

representing processes or phenotypes allows to resolve complex genotype—phenotype
relationships.
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Materials & Methods

Variational Autoencoders

« A Variational Autoencoder(VAE) is a deep generative model which can learn meaningful data
representations from high—dimensional input data.

* VAE can encode a particular distribution. After the encoding phase, there is a sampling phase in
which we sample points from the distribution g4 (z|x).

» Encoding function q: q4(z|x) - variational distribution(encoding distribution)
* Decoding function p: pg(x|z) — posterior
 Traditionally, the distributions in the VAE architecture are supposed to be Gaussian: the

encoder function will learn the two—parameter vectors p, o that are used to generate samples in
q4(z|x) using the reparameterization trick:

z=u+oQ@e, e ~N(0,1)




Materials & Methods

Variational Autoencoders

* The loss function for this architecture can be written as the sum of 2 distinct losses:
1. Reconstruction loss

Lyecon = IIEqd,(zpc) [po (x|2)]

— Interpretation: conditional entropy of x given z, quantifies the uncertainty one has over the joint
distribution (x, z), knowing z

2. Regularization loss: Kullback-Leibler(KL) divergence

pe(2)
9 402l

Lreg = DKL(Qcp(le)llpe (Z)) = IEq¢ [lO

c? In_’garp_retation: measurement of difference between the variational distribution and the prior
Istrioution

* Total loss is defined with a hyperparameter § as:

L= Lyecon + IBLreg
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Materials & Methods

Directed Acyclic Graph (DAG)
» Graph with directions, but no directed cycles.

* |f a graph is (1) directed, (2) topologically ordered,
it Is considered a DAG.
* DAG is composed of:
1. Verticles (Nodes)
2. Edges (Connections)

* Some examples of DAGs:
* Family tree
« Gene Ontology (GO)
« Human Phenotype Ontology (HPO)




Materials & Methods

Directed Acyclic Graph (DAG) — Gene Ontology (GO)

« 3,083 GO terms & 19,469 annotated genes (HGNC symbols)
3,245 GO terms & 19,387 annotated genes (Ensembl IDs)

* Filtered ‘Biological Process’ terms and ‘is a’ relationships only
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Materials & Methods

Directed Acyclic Graph (DAG) — Human Phenotype Ontology (HPO)
* Ontology that specifies disease-related terms, with more general disease in parent nodes
« 4 525 HPO terms & 4,774 annotated genes (HGNC symbols)

- Example) A Abridged directed acyclic
of the Human Phenot‘y:ye Ontglw

Reese, J. T, Blau, H., Casiraghi, E., Bergquist, T., Loomba, J. J,, Callahan, T. J., Laraway, B., Antonescu, C., Coleman, B., Gargano, M., Wilkins, K. J., Cappelletti, L., Fontana, T., Ammar, N., Antony, B., Murali, T. M., Caufield, J. H., Karlebach, G., McMurry, J. 14
A., Williams, A, ... RECOVER Consortium (2023). Generalisable long COVID subtypes: findings from the NIH N3C and RECOVER programmes. £BioMedlicine, 87, 104413. https://doi.org/10.1016/j.ebiom.2022.104413



Materials & Methods

OntoVAE architecture

* OntoVAE is a modified VAE with a modified structure, so that it can incorporate DAG.
* A non-linear encoder is coupled to a masked, multi—-layer linear decoder representing biological ontology.

* Features of the model
» Latent space is the root layer.
 Each layer of the decoder corresponds to 1 depth of the ontology. (terms with same depth = same layer)
» Decoder is linear, multi-layered, sparse, and have connections between non—neighboring layers(enseNet).
* This model has a trimming process to make a meaningful latent space.
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Materials & Methods

OntoVAE architecture — Trimming process

* Motivation: to make a meaningful latent space and avoid a 1D latent space

* Overall idea: Only terms with a specific #. of annotated genes are incorporated into the

decoder nodes, so that generic terms and specific terms are removed.
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Materials & Methods

Retrieval and comparison of pathway activities

* Activities are retrieved at each node in OntoVAE models.
 attach pytorch hooks to each layer

# get activities from decoder

tivation = ..
activation = {} for i in range(len(self.decoder.decoder)-1):
def get_activation(index):

def hook(model, input, output): key = S'tl"(i)
activation[index] = output.to('cpu').detach() value = self.decoder.decoder[i][@].register_forward_hook(get_activation(i))

return hook

hooks[key] = value

hooks = {}

* Wilcoxon tests were performed on each GO term between two tissues.
* Two—tailed Wilcoxon tests: compare pathway activities between groups of samples
« One-tailed Wilcoxon tests: compare up/down-regulated pathway activities between groups of samples




Materials & Methods

Dataset
* Ontology: GO, HPO

* Bulk RNA-seq data

« Genotype Tissue Expression(GTEx) dataset
* Limb-girdle muscular dystrophy (LGMD; X|CH3 22 HUA0H) dataset
(from Gene Expression Omnibus; GEO)

* Preprocessed single—cell RNA-seq dataset of interferon(IFN)—f from
Peripheral blood mononuclear ceIIs(PBI\/ICs) dataset

e ——a L

Ontology
Dataset GTEx GTEx muscle GTEx muscle PBMC
Make GO-based Apply /n silico Predict drug
decoder and capture Simulate /n silico knockouts to find response by
Task : : : oo o
key terms for each gene knockouts influential gene in a performing /n silico
tissue disease stimulation
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[Figure 1] OntoVAE provides biological interpretability in latent space and decoder
» Data: GTEx bulk RNA-seq data & GO

* (b) Retrieved the activities of all terms in the latent space and decoder for each sample and
looked at some example terms to see if they were more active in the expected tissues.

* (c) median AUC from CV measured for each GO term(input) in classifying correct tissue(output)
* Naive Bayes classifier, 10-fold CV, 1-vs—all setting for each tissue
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[Figure 1] OntoVAE provides biological interpretability in latent space and decoder
« Why does ‘muscle system process’ show high AUC in classifying ‘Brain tissue’?

* (d) Density of brain tissues over ‘muscle system process’ pathway is very low
* Low expression of pathways, as well as high expression, affect the classification results
* High AUC does not necessarily mean high pathway activity.
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[Figure 1] OntoVAE provides biological interpretability in latent space and decoder
* (e) Subnetwork of the GO graph, colored by median AUC

« 2 main branches are shown, and active nodes are shown with bright color (yellow, green)
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Results

[Figure 1] OntoVAE provides biological interpretability in latent space and decoder

(f) Process of extracting the top GO terms for a given tissue

* The authors retrieve the activities at each node when running samples through a pre—trained model.
(Pytorch hooks)

* One-sided Wilcoxon tests were performed on each GO term between two tissues.

« Terms with high hits(#. of significant results from multiple tests) were selected
to further group the terms for a given tissue into a network.
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[Figure 2] OntoVAE can be used for in silico phenotype predictions of gene knockouts
« Data: GTEx muscle(881 samples) + GO

* Performed an /n silico knockout of the DMD gene in the GTEx muscle samples
 DMD: encodes protein dystrophin, located in the muscles, attaches the cytoskeleton to the extracellular matrix.
» Depletion of functional dystrophin protein = cause muscle weakness & degradation

* (a) Schematic of how OntoVAE is used for /n sifico gene knockout experiments
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[Figure 2] OntoVAE can be used for in silico phenotype predictions of gene knockouts
 (b) Term-level analysis obtained terms highly related to DMD function.
* (c) Gene-level analysis obtained terms highly related to DMD function, from significant genes.

* These show that OntoVAE captures meaningful relationships between the genes, and therefore
can be used to predict the consequences of a gene knockout, with direct interpretability.
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[Figure 3] OntoVAE can predict disease—specific gene expression changes
« Data: GEO LGMD(881 samples) / HPO(disease-related ontology)(4774 genes)
« Performed knockout for every gene (4609), followed by paired Wilcoxon test at the LGMD node

« 2 separate one—sided paired Wilcoxon tests for each gene

« GSEA results using the ranking of genes that significantly (a) down-regulated, (b) up-regulated
the LGMD node in the decoder
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[Figure 3] OntoVAE can predict disease—specific gene expression changes

« Validity data: bulk RNA-seq data on | //[D patients (V= 16) and control (N = 15) (0eouydi o1 o/ 2022)
* Made a list of /o~ & Down-regulated genes based on real data

 Predicted genes: 988 ‘leading edge’ genes from the GEO LGMD data
* (c) check overlapping cenes from GEO LGMD and validation LGNV D data: 147 / 10 genes

* (d), (e) check whether 10 genes that were directly annotated to LGMD in the HPO dataset
would affect the model performance
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[Figure 4] OntoVAE can predict treatment effects /n silico

« Data: PBMC dataset (Kang et az, 2018) / GO (need terms for IFN response)
* PBMCs from lupus patients were treated with IFN—3
» Performed single—cell RNA-seq

* (a) UMAP representation of the dataset
* Clustering based on treatment vs control (left)
* Clustering based on each cell type (right)

* Investigated CDAT cells for OntoVAE: @ [ e sumusues
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[Figure 4] OntoVAE can predict treatment effects /n silico

 Extract “reference genes” (CDAT_IFN-B_stim_up) from CDA4T cells by performing GSEA
between stimulated and unstimulated CD4T cells = 146 genes significantly up-regulated

* Use GO-decoder OntoVAE to train model for unstimulated CDAT cells, then perform one—-by-
one /n silico stimulation of all input genes
+ Set the expression value of each gene to a higher value: simulate a specific type of gene expression as enhanced

(b) Paired Wilcoxon test on ‘type | IFN signaling pathway’ ()
node in the GO-decoder, then performed GSEA with the
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[Figure 4] OntoVAE can predict treatment effects /n silico (©) teading edge genes 117) (). contol genes 717)

* Find the similarity of the perturbed(modified) CD4T cells to _—-‘-L _—-AL
IFN-stimulated CDA4T cells

« Compared UMAP projection of actual stimulated cells,
CDAT control, and /n silico—stimulated cells

* (c) /in silico-stimulation performed for 717 leading edge genes
 (d) Same #. of bottom genes were /in silico-stimulated for comparison

* Results show that while stimulating significant genes from GSEA,
the distribution of the cells get closer to the actual stimulated cells
as the stimulation strength gets larger.

* This is not seen from results stimulating control genes.

stimulation strength
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® IFN stimulated @ in silico stimulated @ control UMAP2
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[Figure 4] OntoVAE can predict treatment effects /n silico

« (e) 44 cenes overlapped between the predicted genes and reference genes,
« 35 out of 44 genes are not directly annotated to the target term or its children terms.

* (f) Some of the remaining 6/ predicted genes overlap with DEGs in other cell types.
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Discussion

* In this work, the authors designed OntoVAE, a novel VAE, where any hierarchical
biological network that has the structure of a DAG can be incorporated in its latent
space and decoder. OntoVAE can also be trimmed to have a reasonable number of root

nodes that represent the latent space variables.
« The model was applied on different ontologieS(GO HPO) and datasets(GTEx, PBMC).

L

Ontology
Dataset GTEx GTEx muscle GTEx muscle PBMC
Make GO-based Apply /n silico Predict drug
decoder and capture Simulate /n silico knockouts to find response by
Task : : : oo
key terms for each gene knockouts influential gene in a performing /n silico

disease stimulation

tissue




* One interesting and central finding is the fact that the model can predict influential
genes on processes or phenotypes that go beyond the ones directly annotated to the
term in question, indicating that the model is capable of learning more complex gene-
term relationships in a data—driven way.

* OntoVAE has advantages in its model that it does not limit the number of biological
terms under scrutiny or use a single—layer linear decoder. This makes the model
capable of encoding thousands of terms without the need for preselection and
maintaining the hierarchical information contained in the ontology.

* In summary, OntoVAE can be adapted to any ontology and dataset. It is used to
compute pathway activities and predict disease or treatment-induced changes in gene
expression. This model fully exploits the conceptual complexity of the hierarchical
structure of the ontology and can highlight differences between samples at different
levels of the ontology.
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