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Introduction:

• Cancer is one of the deadliest diseases for which cancer-causing agents such as 
oncogenes, mutations, and gene regulatory associations have not been fully 
understood.

• Patients show different characteristics in terms of the progression of disease and 
response to treatment.

• Large-scale datasets like The Cancer Genome Atlas (TCGA) and the Molecular 
Taxonomy of Breast Cancer International Consortium (METABRIC) provide rich 
multiomics information, from genetic mutations to gene expression profiles.
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Introduction:

• Many cancer subtype prediction studies have relied solely on one type of biological 
data, which only captures a portion of the underlying biology.

• Existing computational tools struggle to integrate the comprehensive scope of 
multiomics data effectively.

• Previous methods like iClusterPlus, Similarity Network Fusion (SNF), and PINSPlus
have limitations in their integration approaches, focusing either on patient similarity 
networks or features without utilizing both.

• Limitations include the applicability to single networks, not leveraging multiple data 
modalities, and not utilizing node features comprehensively in network structures.
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Introduction:

• Understanding GNNs and Their Application
• Graphs are ideal for storing multiomics datasets due to their ability to model 

complex relationships.
• However, traditional machine learning and deep learning architectures struggle 

with graph data due to its unstructured nature, where each node can have a 
variable number of neighbors without a fixed ordering.

• Graph Neural Networks(GNN) aggregate features from the local structure of graphs 
more effectively, making them suitable for large-scale and feature-rich datasets.
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Introduction:

• Graph Convolutional Networks (GCNs) in Cancer Research
• Among GNNs, GCN stand out for their modified aggregation technique that 

includes self-edges with normalization across neighbors, allowing for efficient 
feature aggregation.

• GCNs have been increasingly applied to biological problems, including cancer 
subtype prediction and drug response prediction, showcasing their potential in 
leveraging graph-structured data for complex analyses.
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Introduction:

• Single Network Application:
• Early applications of convolution methods to graph-structured data, including 

cancer subtyping, were limited to single networks. This approach often missed 
the integration of multiple data modalities, reducing the comprehensiveness of 
the analysis.

• Case Studies Highlighting Limitations:
• An example is the application of GCNs for cancer type prediction using only gene 

expression datasets, which overlooks the richness of multiomics data.
• MOGONET, a supervised multiomics integration framework using GCNs, operated 

on separate networks for mRNA expression, DNA methylation, and microRNA 
expression.
→ Did not integrate multiple network features, limiting its ability to fully 
leverage the available data for more accurate predictions.
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Introduction:

• Need for Comprehensive Integration:
• The limitations highlight the need for methods that can integrate features across 

multiple networks and data types.

• SUPREME addresses these gaps by not only generating network-specific patient 
embeddings but also by integrating these embeddings with raw features from 
multiple omics data types.

• This comprehensive approach ensures that all available data is utilized, improving 
the accuracy of subtype predictions and capturing more nuanced signals within 
the data.
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Introduction:

• Performance:
• Demonstrated superior accuracy in cancer subtype prediction tasks compared to 

other integrative supervised methods.
• Showed robust performance across multiple datasets, including TCGA and 

METABRIC.
• SUPREME can differentiate the characteristics of cancer subtypes properly 

utilizing the multiple network relations and multiple data types
• Revealed survival differences among cancer subtypes with greater significance 

than those identified by conventional gene expression-based methods.
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Introduction:

• SUPREME pipeline for breast cancer subtype prediction



Materials and Methods
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Materials and Methods:

• Process Steps:

1. Data Preparation: Collection and preprocessing of data across various types for 
analysis.

2. Feature Extraction: Features are extracted from each data type to be utilized in 
further analysis.

3. Similarity Network Generation: Individual similarity networks are generated for 
each data type, incorporating features from all data types as node attributes.

4. Network-Specific Node Embeddings: GCN is applied to each network to 
generate network-specific node embeddings.

5. Prediction: Integrates individual network-specific embeddings and raw features 
for the final prediction task.
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Materials and Methods: Data preparation

• Datasets:
• TCGA: 1,022 breast tumor samples across seven data types 

(clinical, copy number aberration, coexpression, gene 
expression, DNA methylation, microRNA expression, mutation).

• METABRIC: 1,699 breast tumor samples across five data types 
(clinical, copy number aberration, coexpression, gene 
expression, mutation).

• Combined TCGA and METABRIC: 2,721 breast tumor samples 
across three data types (clinical, gene expression, mutation).

• Ground Truth: Utilizes PAM50 subtype labels (Basal-like, HER2-
Enriched, Luminal-A, Luminal-B, Normal-like) for prediction tasks.
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Materials and Methods: Data preparation

• Additional Datasets: 
• IMDB Dataset (movie genre prediction): Heterogeneous network with three 

node types (movie, actor, director) and two associations (movie-actor, movie-
director), classifying movies into three genres: action, comedy, and drama.

• ACM Dataset (paper area prediction): Heterogeneous network with three node 
types (paper, author, subject) and two associations (paper-author, paper-
subject), classifying papers into three classes: database, wireless communication, 
and data mining.
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Materials and Methods: Data preparation

• Table 1. Number of features and samples for each dataset. 
BL: basal-like, HER2: HER2-Enriched, LA: luminal- A, LB: luminal-B, NL: normal-like
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Materials and Methods: Feature extraction & network generation 

• Breast cancer subtyping 
• Utilized Boruta algorithm for feature selection across 7 data types from TCGA, 

5 from METABRIC, and 3 from combined datasets.
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• Selected features are used to compute patient 
similarities, serve as node attributes in similarity 
networks, and integrate as raw features for prediction.

• Patient similarities calculated using Pearson correlation, 
Gower metric, and Jaccard distance for various data 
types including gene expression and clinical features.

• Constructs unweighted patient similarity networks using 
a defined number of top edges: 2,500 for TCGA, 4,500 
for METABRIC, and 7,000 for combined data.



Materials and Methods: Feature extraction & network generation 

• Used Pearson correlation for datatypes with continuous values

• Used Jaccard Similarity for binary datatype (mutation datatype)

• Used Gower metric for mixed datatype (clinical datatype), containing continuous, 
binary, and categorical at the same time.
→Numerical variables: Manhattan distance
→ Categorical variables: Dice distance
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Materials and Methods: Feature extraction & network generation 

• IMDB Dataset (Movie Genre Prediction):
• No feature selection was applied; node features were directly used from 

previous processing.
• Generated 2 movie similarity networks using meta-paths: movie-director-movie 

(17,446 edges) and movie-actor-movie (85,358 edges), indicating similarity based 
on shared directors or actors.

• ACM Dataset (Paper Area Prediction):
• Similarly, no feature selection was applied, with node features used as processed 

in prior studies.
• Created 2 paper similarity networks via meta-paths: paper-author-paper 

(29,281 edges) and paper-subject-paper (2,210,761 edges), with similarity 
defined by shared authors or subjects.
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Materials and Methods: Node embedding generation

• Embedding Generation: SUPREME creates network-specific node embeddings that 
reflect both the network topology and the individual node features, ready for 
downstream machine learning tasks.

• GCN Model Utilization: Employs the GCN model by Kipf and Welling, which 
incorporates self-edges in convolution and normalizes the sum of aggregated 
features from neighbors. 
• This approach enables learning from the data by considering the one-hop local 

neighborhood and encoding the network's local topology.

22



Materials and Methods:

• Layered Network Learning:
• Stacked layers allow for the recursive diffusion of neighborhood features, 

extending beyond the immediate one-hop neighborhood to capture broader 
network contexts.

• Graph Representation:
• Graphs are defined as undirected, with 𝐺 = (𝑉, 𝐸) where V represents nodes 

and E represents edges. Nodes are interconnected based on associations within 

the graph, ensuring 𝑣𝑖 , 𝑣𝑗 ∈ 𝐸 implies a bidirectional association 𝑣𝑗 , 𝑣𝑖 ∈ 𝐸
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Materials and Methods:

• GCN Input and Iteration:
• Inputs include a feature matrix X of dimensions n x k (where n is the number of 

nodes, and k is the feature size) and an adjacency matrix A with self-edges 
defined as:

• Iterative updates follow the formula:

• where 𝐷 is a degree matrix, 

• 𝐻(𝑙) represents the activation matrix for layer 𝑙, 
• 𝑊(𝑙) is the layer's weight matrix, and 
• 𝜎 denotes the activation function. 
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Materials and Methods:

• Network Configuration:
• Seven patient similarity networks created, each derived from a distinct data type.
• Nodes represent breast cancer patients, connected based on similarity metrics 

from their respective data types.

• Example Network:
• Gene expression-derived patient similarity network (G) connects patients with 

similar gene expression profiles.
• Node features in G include combined features from all seven data types.
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Materials and Methods:

• Feature Matrix and Neighborhood:
• Features for a node vi are represented as xi ∈ 𝑅𝑘, where k is the total number of 

features.
• The feature matrix X ∈ 𝑅𝑛×𝑘 combines features from all patients.
• The one-hop local neighborhood of a node, Ni, includes nodes directly 

connected to vi.

• Feature Aggregation and GCN Layers:
• Feature aggregation employs a scaled adjacency matrix 

• A 2-layer GCN model outputs 
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Materials and Methods:

• Prediction and Optimization:
• Aims to predict five classes corresponding to breast cancer subtypes: Basal-like, 

Luminal-A, Luminal-B, HER2-Enriched, and Normal-like.

• Utilizes cross-entropy error for loss calculation and Adam optimization for 
gradient descent.

• Incorporates dropout in the first GCN layer to prevent overfitting and applies 
early stopping with a patience of 30 epochs to ensure a minimum of 200 epochs 
for model training.
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Materials and Methods:

• Stratified Splitting: Samples divided into training, validation, and test sets, 
maintaining subtype label ratios across splits.
• Test set reserved solely for final evaluation.
• Training and validation sets randomly selected in a stratified manner for each 

run.

• Breast Cancer Subtyping Splits:
• 20% of samples designated as the test set.
• Of the remaining 80%, 60% used for training and 20% for validation.

• IMDB and ACM Datasets:
• Followed data splits specified in previous studies.
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Materials and Methods:

• Hyperparameter Tuning:
• Utilized macro-averaged F1 score (macro F1) for evaluation.
• Repeated evaluation 10 times for each combination of hyperparameters (hidden 

layer size, learning rate).
• Best hyperparameter combination chosen based on the median macro F1 score 

on validation data.

• Model Generation:
• Produced 7 different GCN models for TCGA data, 5 for METABRIC data, 3 for 

combined data, and two each for ACM and IMDB data based on the 
methodology.

• Final models used to extract network-specific patient embeddings for 
downstream prediction tasks.
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Materials and Methods:

• Combining Embeddings: Node embeddings from various data types were 
concatenated with raw features for model training, resulting in multiple models 
based on data type combinations.

• Models by Dataset: Generated 127 SUPREME models for TCGA, 31 for METABRIC, 7 
for combined TCGA+METABRIC, and 3 each for ACM and IMDB datasets.

• ML Methods and Selection: Tested with XGBoost, SVM, RF, and MLP; MLP chosen 
for superior performance across all datasets.

• Hyperparameter Tuning: Similar process to GCN, focusing on prediction model 
parameters with the best set determined by median macro F1 score on validation 
data.

• Final Evaluation: Final models evaluated on test data over 10 runs, using metrics like 
macro F1, weighted-average F1 score, and accuracy based on these runs' median.
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Results
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Results:

• Comparison with Other Tools: Evaluated against seven other cancer prediction tools 
and baseline methods: DeepCC, GCNC, MOGONET, MLP, RF, SVM, and XGBoost.

• Baseline Methods Integration: ML-based methods (MLP, RF, SVM, XGBoost) utilized 
only raw features from selected data combinations for prediction.

• MOGONET and GCNC:
• MOGONET employed GCN for multiomics data, using datatype-specific 

embedding predictions.
• GCNC applied GCN on gene expression data through either a protein-protein 

interaction (PPI) network or a coexpression network.
• DeepCC relied solely on gene expression data, transforming pathway activity via 

an MLP model.
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Results:

• SUPREME Variants: Tested SUPREME both with and without (SUPREME-) integrating 
raw features with patient embeddings to assess the impact of raw feature integration.

• Model Testing Across Data Combinations: Ran SUPREME, SUPREME-, and other 
models across all available data type combinations. Notably, MOGONET was limited 
to fewer than five data types due to extended processing times, resulting in only 31 
model variations for TCGA, whereas all models were tested for METABRIC and 
combined datasets.
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Results: SUPREME outperformed the cancer subtype prediction tools and baseline methods 
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• Violin plot of macro F1 scores obtained from all different combinations of datatypes 
as compared to the cancer subtype prediction tools and baseline supervised methods

• SUPREME and its variant without raw feature integration (SUPREME-) surpassed all 
other multiomics integration methods across three datasets in macro F1, accuracy, 
and weighted F1 scores.

TCGA data



Results: SUPREME outperformed the cancer subtype prediction tools and baseline methods 
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METABRIC data

Combined data

• Violin plot of macro F1 scores obtained from all different combinations of datatypes 
as compared to the cancer subtype prediction tools and baseline supervised methods



Results: SUPREME outperformed the cancer subtype prediction tools and baseline methods 
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• Violin plot of accuracies and weighted F1 scores

TCGA data METABRIC data Combined data



Results: SUPREME outperformed the cancer subtype prediction tools and baseline methods 
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• Subtype-specific F1 scores.
• Checked the subtype-specific F1 scores, and had consistent and higher 

performance across all sub- types, mostly having significant differences

TCGA data



Results: SUPREME outperformed the cancer subtype prediction tools and baseline methods 
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• Subtype-specific F1 scores.

Combined data

METABRIC data



Results: SUPREME had consistently high performance even with single models
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• Single Model Analysis: Investigated SUPREME's performance using models generated 
from only one data type, referred to as "single model."

Single model results on TCGA data

Macro F1 scores



Results: SUPREME had consistently high performance even with single models
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• Single model results on METABRIC and combined data

METABRIC data Combined data



Results: SUPREME's Impact on Survival Differences in Cancer Subtyping
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• Survival Analysis Strategy: 
• Only applied to the results on TCGA data where patient survival data were 

available.
• Utilized predicted subtype labels across different data modality combinations for 

survival analysis.
• Comparing SUPREME to both supervised and state-of-the-art unsupervised 

cancer subtyping tools, including iClusterPlus, SNF, PINSPlus, and affinity 
propagation (AP) clustering.



Results: SUPREME's Impact on Survival Differences in Cancer Subtyping
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• Survival analysis results violin plot



Results: SUPREME's Impact on Survival Differences in Cancer Subtyping
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• Kaplan-Meier plots of two cases: SUPREME & PAM50 labels

• SUPREME had a more significant survival difference than the survival difference 
between ground truth (i.e., PAM50) labels

SUPREME PAM50



Results: Feature / omics importance analysis
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• Impact of network-specific patient embeddings.
• Assessed each data type's impact on model performance by comparing models 

with and without a specific patient embedding from data type X, using SUPREME-
(excluding raw feature integration) to focus solely on patient embeddings' effects.

TCGA data



Results: Feature / omics importance analysis
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• Impact of network-specific patient embeddings.

Combined data

METABRIC data



Results: Feature / omics importance analysis

46

• Impact of features from each datatype.
• SUPREME's performance was evaluated by excluding features from each datatype 

(Y) separately, creating models without Y-specific features (𝑛𝑜 𝑌𝑓) for patient 

similarity networks and subtype prediction.

TCGA data



Results: Feature / omics importance analysis
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• Impact of features from each datatype.

Combined data

METABRIC data



Results: Ablation studies
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• Compared SUPREME with its variations when some steps were skipped to assess 
their importance



Discussion
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Discussion:
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• SUPREME is an integrative approach using GCNs on multiple similarity networks 
with multi-modal node features, outperforming other methods on various 
prediction tasks and cancer subtype differentiations.

• It demonstrated robustness, consistency, and significant survival differences 
between predicted subtypes, offering ensemble subtype labels with high 
support.

• Ablation study showed the importance of gene expression features, patient 
embeddings, and datatype-specific embeddings in improving model 
performance.



Discussion:
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• Limitations:
• Variations in predictive performance across different datasets, particularly 

noted in mutation-based models
• These discrepancies were mainly due to the sparse nature of the binary 

mutation features.

• Potential Extensions:
• Incorporating attention mechanisms to weigh contributions from different 

data types and neighborhoods more dynamically, enhancing the model's 
ability to focus on the most relevant information for subtype prediction.

• Expanding SUPREME to include regulatory relations, like competing 
endogenous RNA (ceRNA) interactions, to enrich patient similarity networks 
with gene regulatory interactions and complex patient relations, offering 
deeper insights into cancer biology.



Thank you
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