Negative binomial mixed models for analyzing longitudinal CD4 count data

2024. 02. 15 BIBS seminar

Jiwon Park

Contents

- 1. Introduction
- 2. Materials & method
- 3. Result
- 4. Discussion & Conclusion

Introduction

Introduction

- It is important to correctly model the CD4 cell count or disease biomarkers of a patient in the presence of covariates or factors determining the disease progression over time.
- The Poisson mixed-effects models (PMM) can be an appropriate choice for repeated count data.
- However, this model is not realistic because of the restriction that the mean and variance are equal.
- PMM can be replaced by the negative binomial mixed-effects model (NBMM).

CD4 cell

- CD4 cell counts deliver a sign of the wellbeing of an individual immune system.
- It also provides information about disease progression that play an essential role in the immune system.

Materials and Method

Data

- Data from the CAPRISA 002 AI Study
- Between August 2004 and May 2005, CAPRISA introduced a cohort study recurring high-risk HIV negative women to a follow-up study
- monitored to examine disease progression and CD4 count/viral load evolution.

- Statistical modeling method applied to count data
- A linear model consists of a response variable Y, which is assumed to be normally distributed, and several predictors $(x_1, x_2, ..., x_p)$.
- Multiple regression analysis studies the linear relationships among two or multiple independent variables and one dependent (response) variable. The multiple regression model is given by

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon_i = \beta_0 + \mathbf{x}'_i \mathbf{\beta} + \varepsilon_i = \beta_0 + \mathbf{\beta}' \mathbf{x}_i + \varepsilon_i, i = 1, \ldots, n.$$

- They extend these multiple linear regression model ideas to generalized linear models (GLM) where the distribution of the outcome variable can include distributions other than normal.
- Then the outcome y_i can be continuous, count, ordinal, categorical, and so on as long as its distribution is from the exponential family.
- **A Poisson process** is mainly used as an initial point for modeling the stochastic difference of count data around a theoretical expectation.

- The Poisson regression is a commonly-used statistical model for *n* responses y_1, \ldots, y_n whose domain is non-negative integer values.
- Each y_i is modeled as an independent Poisson random variable.
- Thus, a model for the Poisson rate parameter λ_i is given by

$$y_{i} \stackrel{iid}{\sim} \text{Poisson}(\lambda_{i})$$

$$n \lambda_{i} = \beta_{0} + \beta_{1}x_{i1} + \ldots + \beta_{p}x_{ip} = \beta_{0} + \sum_{i=1}^{p} \beta_{j}x_{ij} \quad \cdot \quad x_{i1}, \ldots, x_{ip} : \text{a set of } p \text{ explanatory variables}$$

$$\cdot \quad \beta = \beta_{0}, \ldots, \beta_{p} : \text{regression coefficients}$$

$$\lambda_{i} = e^{\beta_{0} + \beta_{1}x_{i1} + \ldots + \beta_{p}x_{ip}} = e^{\beta_{0} + \sum_{j=1}^{p} \beta_{j}x_{ij}}$$

• The probability mass function(pmf) of the poisson random variable with parameter (λ_i)

$$f(y_i, \lambda_i) = \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}, y_i = 0, 1, 2, \cdots$$
$$= \sum_{i=1}^n \left[y_i \ln (\lambda_i) - \lambda_i - \ln y_i! \right]$$

Likelihood function

• Likelihood function of Poisson regression model for getting model parameter estimates based on Data.

$$\ell(\beta_0, \dots, \beta_p) = \sum_{i=1}^n \left[y_i \left(\sum_{j=0}^p \beta_j x_{ij} \right) - e^{\sum_{j=0}^p \beta_j x_{ij}} - \ln y_i! \right]$$
$$= \sum_{i=1}^n \left\{ y_i \mathbf{x}'_i \mathbf{\beta} - \exp\left(\mathbf{x}'_i \mathbf{\beta}\right) - \ln y_i! \right\}.$$

3. Result

Method

Overdispersion

- $var(y_i) = \Phi * \lambda_i$, $\Phi > 1 \rightarrow$ over-dispersion (Φ : variance parameter)
- $var(y_i) = \Phi * \lambda_i$, $\Phi = 1$
- $var(y_i) = \Phi * \lambda_i$, $\Phi < 1 \rightarrow$ under-dispersion

• Relation :
$$var(y_i) = \widehat{\Phi} * \overline{y}$$

$$:: \widehat{\Phi} = var(y_i) / \overline{y}$$

Overdispersion criteria for realistic data

Pearson chi-square statistic $(\chi^2)/df >1$: suspicion Pearson chi-square statistic $(\chi^2)/df >2$: definite

Negative binomial distribution

- The parameter estimates based on the negative binomial model are not exceptionally different from those based on Poisson model.
- However, the Poisson model underestimates the SEs when over-dispersion is present, leading to improper inference.

Negative binomial distribution

- In Negative Binomial distribution, the variance tends to increase more significantly as the mean increases, including the inherent additional variability.
- $y_i \sim NB(\mu_i, \mu_i[1 + \mu_i/\alpha])$ where $\alpha (\alpha > 0)$
 - $E(y) = \alpha \theta = \mu$
 - $var(y) = \alpha\theta(1+\theta)$

Gamma distribution

- The part where gamma distributions are used for overdispersion modeling plays a key role in defining the dispersion structure of the negative binomial distribution model.
- Gamma distribution is used to estimate this overdispersion parameter, which increases the flexibility of the model, allowing more accurate capture of the overdispersion observed in real data.

18

Method

Gamma distribution

$$f(\lambda; \alpha, \theta) = \frac{\lambda^{\alpha - 1} e^{-\lambda/\theta}}{\theta^{\alpha} \Gamma(\alpha)}, \quad \lambda > 0, \quad \alpha > 0, \quad \theta > 0$$

$$f(Y|\lambda) = \frac{e^{-\lambda}\lambda^k}{k!} \frac{\lambda^{\alpha-1}e^{-\lambda/\theta}}{\theta^{\alpha}\Gamma(\alpha)}$$

$$= \binom{\alpha+k-1}{k} \binom{\theta}{1+\theta}^k \left(\frac{1}{1+\theta}\right)^{\alpha} = \frac{\Gamma(\alpha+k)}{k!\Gamma(\alpha)} \left(\frac{\theta}{1+\theta}\right)^k \left(\frac{1}{1+\theta}\right)^{\alpha},$$

•
$$Y|\lambda \sim poisson(\lambda)$$

- $\lambda \sim \text{Gamma}(\alpha, \theta)$
- $f(Y) = poisson(Y|\lambda) * f(\lambda) \sim NB\left(\mu_i, \mu_i(1+\frac{\mu_i}{\alpha})\right)$
- θ : scale parameter
- *α* : shape parameter

$$\binom{\alpha+k-1}{k} = \frac{(\alpha+k-1)(\alpha+k-2)\dots\alpha}{k!} = \frac{(\alpha+k-1)!}{k!(\alpha-1)!}$$

Negative binomial distribution

$$L(\boldsymbol{\beta}, \alpha) = \prod_{i=1}^{n} \frac{\Gamma(\alpha + k_i)}{k_i! \Gamma(\alpha)} \left(\frac{\theta_i}{1 + \theta_i}\right)^{k_i} \left(\frac{1}{1 + \theta_i}\right)^{\alpha} \qquad \begin{array}{l} i : \text{# of observation} \\ \alpha : \text{parameter of Gamma distribution} \\ \beta : \text{model parameter} \end{array}$$

$$=\sum_{i=1}^{n} \left(\sum_{j=0}^{k_{i}-1} \log(\alpha+j) - \log k_{i}! + k_{i} \log \theta_{i} - k_{i} \log(1+\theta_{i}) + \alpha \log 1 - \alpha \log(1+\theta_{i})\right)$$
$$\ell(\boldsymbol{\beta}, \alpha) = \sum_{i=1}^{n} \left(\sum_{j=0}^{k_{i}-1} \log(\alpha+j) - \log k_{i}! + k_{i} \log \theta_{i} - (k_{i}+\alpha) \log(1+\theta_{i})\right)$$

Generalized linear mixed - effect model

- It is necessary to extend the GLM to generalized linear mixed-effects models, including a subject-specific random effect introduced in the *linear predictor* to seize the dependence.
- This involves modeling the inherent associations that exist between data measured multiple times for the same subject over time.
- This approach enables more accurate capture of each individual's patterns of change over time, thus increasing the accuracy of the analysis.

Generalized linear mixed - effect model

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})X_{1ij} + \ldots + (\beta_p + b_{ip})X_{pij} + \varepsilon_{ij},$$

$$\log (E(y_{ij})) = \beta_0 + \beta_1 x_{1ij} + \dots + \beta_p x_{pij} + b_0 + b_1 x_{1ij} + \dots + b_p x_{pij}$$

$$\log \left\{ E(y_{ij}|\boldsymbol{b}_{i}) \right\} = \eta_{ij} = \boldsymbol{x}_{ij}^{'}\boldsymbol{\beta} + \boldsymbol{z}_{ij}^{'}\boldsymbol{b}_{i}.$$

 β_0 , β_1 , β_3 , ..., β_p : fixed effect b_{i0} , b_{i1} , ..., b_{ip} : random effect ϵ_{ij} : residual j: time point

$$\log (\mu_{ij}) = \mathbf{x}_{ij}^{'} \boldsymbol{\beta} + \mathbf{z}_{ij}^{'} \mathbf{b}_{i} + \varepsilon_{ij},$$

$$P(y_{ij} = y | \mathbf{b}_{i}, \mathbf{x}_{ij}, \mathbf{z}_{ij}) = \frac{e^{-\mu_{ij}} \mu_{ij}^{y}}{y!} = \frac{1}{y!} e^{-\exp\left(\mathbf{x}_{ij}^{'} \boldsymbol{\beta} + \mathbf{z}_{ij}^{'} \mathbf{b}_{i}\right)} \exp\left(\mathbf{x}_{ij}^{'} \boldsymbol{\beta} + \mathbf{z}_{ij}^{'} \mathbf{b}_{i}\right)^{y}$$

$$= \frac{1}{y!} \exp\left[\left(\mathbf{x}_{ij}^{'} \boldsymbol{\beta} + \mathbf{z}_{ij}^{'} \mathbf{b}_{i}\right)^{y} - \exp\left(\mathbf{x}_{ij}^{'} \boldsymbol{\beta} + \mathbf{z}_{ij}^{'} \mathbf{b}_{i}\right)\right], y = 0, 1, 2, \dots$$

 b_i : random effect

 β : fixed effect

- \boldsymbol{x}_{ij} : variable of interest
- z_{ij} : explanatory variables for random effects

 μ_{ij} : $E(y_{ij})$

		CD4 count	N (%)			
Covariates	Level	<200	200-500	>500	p-value	% Missing
	Underweight	2 (0.03)	219 (3.12)	254 (3.62)		0.0
Resoling BMI category	Normal weight	114 (1.62)	2305 (32.84)	2690 (38.32)	<0.0001	
baseline bivir category	Overweight	18 (0.26)	512 (7.29)	657 (9.36)	< 0.0001	
	Obese	0	17 (0.24)	231 (3.29)]	
	Undetected	0	0	16 (0.23)		
Baseline wirel load	Low	20 (0.28)	791 (11.27)	1532 (21.83)	< 0.0001	0.0
Dasenne virar ioad	Medium	45 (0.64)	1209 (17.22)	1497 (21.23)	< 0.0001	
	High	69 (0.98)	1053 (15)	787 (11.21)]	
	No partner	29 (0.41)	565 (8.05)	579 (8.25)		0.0
Number of sexual partners	Stable partner	85 (1.21)	2274 (32.4)	3078 (43.85)	< 0.0001	
	Many partners	20 (0.28)	214 (3.05)	175 (2.49)]	
	<20	1 (0.01)	130 (1.82)	121 (1.72)		0.0
	20-29	97 (1.38)	1872 (26.67)	1977 (28.17)]	
A go group	30-39	17 (0.24)	813 (11.58)	1255 (17.88)	<0.0001	
Age group	40-49	19 (0.27)	203 (2.89)	369 (5.26)	< 0.0001	
	50-59	0	35 (0.5)	91 (1.3)]	
	≥60	0	0	19 (0.27)]	
Educational laval	Primary school	3 (0.04)	104 (1.48)	181 (2.58)	0.0120	
Educational level	Secondary school	131 (1.87)	2949 (42.01)	3651 (52.02)	0.0129	0.0
Diago of regidence	Rural	62 (0.88)	1467 (20.90)	1806 (25.73)	0.7176	0.06
riace of residence	Urban	72 (1.03)	1586 (22.6)	2026 (28.86)	0.7176	0.06
APT initiation group	Pre ART	110 (1.57)	2566 (36.56)	2783 (39.65)	< 0.0001	0.0
ART mitiation group	Post ART	20 (24)	487 (6.94)	1049 (14.95)	< 0.0001	0.0

- It shows the relationship between the number of CD4 cells in HIV-infected patients and various factors.
- CD4 cell count is an indicator of immune system status, and this table shows the patient's weight, viral load, number of age, education level, residence, and ART treatment compared to the CD4 cell count range.

(chi-square test)

- This graph shows how patients' immune systems change over time
- By tracking these changes, they can monitor the progression or treatment effectiveness of HIV.

	Information criteria							
Random effect models	- 2log ℓ	AIC	AICC	BIC	CAIC	HQIC		
Model 1	87,781.28	87,833.28	87,833.48	87,923.23	87,949.23	87,869.54		
Model 2	88,603.50	88,649.50	88,649.66	88,729.07	88,752.07	88,681.58		
Model 3	88,591.64	88,637.64	88,637.80	88,717.21	88,740.21	88,669.72		
Model 4	89,156.39	89,202.39	89,202.55	89,281.96	89,304.96	89,234.47		
Model 5	89,837.18	89,879.18	89,879.31	89,951.83	89,972.83	89,908.47		
Model 6	92,302.08	92,344.08	92,344.21	92,416.73	92,437.73	92,373.37		
Model 7	91,190.61	91,232.61	91,232.74	91,305.26	91,326.26	91,261.90		

Table 4. Comparison of random effect models.

Model 1: Intercept, Time, \sqrt{Time} . Model 2: Intercept, Time. Model 3: Intercept, \sqrt{Time} . Model 4: Time, \sqrt{Time} . Model 5: Intercept only. Model 6: Time only. Model 7: \sqrt{Time} only.

			NB		Poisson	5
Effect	Num DF	Den DF	F value	Pr>F	F value	Pr>F
Time in month	1	235	62.53	< 0.0001	14.80	0.0002
Sqrt_Time	1	234	86.36	< 0.0001	48.41	< 0.0001
Baseline BMI category	3	6307	6.26	0.0003	6.31	0.0003
ART initiation	1	6307	345.45	< 0.0001	5890.28	< 0.0001
Baseline VL	3	6307	7.48	< 0.0001	12.79	< 0.0001
No. of sexual partners	2	6307	1.64	0.1935	1.85	0.1578
Age group	5	6307	1.46	0.1987	27.34	< 0.0001
Education level	1	6307	0.25	0.6196	0.15	0.6990
Place of residence	1	6307	0.01	0.9246	0.11	0.7406

Table 5. Type III Analysis of fixed effects for Poisson and NB distribution.

- An analysis of variance that assesses the significance of fixed effects.
- *Time in month, Sqrt_time, ART, VL* appear to be a significant fixed effect in both models, suggesting that these variables are likely to have a significant influence on CD4 cell number.

	Negative binomial mixed-effects model				Poisson mixed-effects model				
Covariates	Estimate	SE	Pr> t	95% CI for NB estimate	Estimate	SE	Pr> t		
Intercept	6.4697	0.04982	< 0.0001	(6.3715, 6.5679)	6.4625	0.04264	< 0.0001		
Time in month	0.007824	0.000989	< 0.0001	(0.005875, 0.009774)	0.006564	0.001706	0.0002		
Sqrt_Time	- 0.08649	0.009307	< 0.0001	(-0.1048, -0.06815)	- 0.06839	0.009830	< 0.0001		
ART initiation (post)	0.2301	0.01238	< 0.0001	(0.2058, 0.2543)	0.1947	0.002537	< 0.0001		
Baseline BMI category (ref. = normal weight)									
Obese	0.4815	0.1113	< 0.0001	(0.2633, 0.6996)	0.4985	0.1147	< 0.0001		
Overweight	0.02561	0.04975	0.6067	(- 0.07191, 0.1231)	0.03131	0.05148	0.5431		
Underweight	0.005901	0.07927	0.9407	(- 0.1495, 0.1613)	0.01691	0.08264	0.8379		
Baseline HIV viral load	category (re	f.=low VL)							
High VL	- 0.2393	0.05157	< 0.0001	(-0.3404, -0.1382)	- 0.3074	0.05065	< 0.0001		
Medium VL	- 0.1258	0.04587	0.0061	(-0.2157, -0.03585)	- 0.1121	0.04686	0.0168		
Undetectable	0.1377	0.2901	0.6351	(-0.4310, 0.7064)	0.1199	0.2978	0.6872		
Number of sexual partn	ers (ref. = sta	ble partner)						
Many partners	- 0.1560	0.09394	0.0967	(-0.3402, 0.02811)	- 0.1674	0.09908	0.0911		
No partner	- 0.04821	0.04993	0.3343	(-0.1461, 0.04967)	- 0.05913	0.05164	0.2522		
Age group in years (ref.	=<20)								
20–29	0.01166	0.03104	0.7072	(- 0.04919, 0.07251)	- 0.00791	0.007830	0.3125		
30–39	0.02852	0.03432	0.4060	(- 0.03876, 0.09580)	- 0.01239	0.008474	0.1438		
40-49	- 0.00719	0.04545	0.8743	(- 0.09629, 0.08191)	- 0.03422	0.01112	0.0021		
50–59	- 0.05694	0.06662	0.3927	(- 0.1875, 0.07365)	- 0.1399	0.01549	< 0.0001		
≥60	0.2082	0.1532	0.1741	(- 0.09205, 0.5084)	- 0.3107	0.03519	< 0.0001		
Education attainment (ref. = seconda	ary or high s	chool)						
Primary school	- 0.04509	0.09084	0.6196	(- 0.2232, 0.1330)	- 0.03582	0.09263	0.6990		
Residence of participan	t (ref. = urba	n)		·					
Rural	- 0.00373	0.03947	0.9246	(- 0.08112, 0.07365)	0.01337	0.04038	0.7406		

Figure 3. Prediction of 7 randomly selected individual profiles plot of CD4 count for 4 years.

A prediction of changes in the number of CD4+ cells in an arbitrarily selected individual patient

 $log(\hat{\mu}_i) = 6.4697 + 0.007824 \times time - 0.08649 \times \sqrt{time} + 0.2301$ $\times postHAARTtreatment + 0.4815 \times obese - 0.2393$ $\times highVL - 0.1258 \times mediumVL.$

- $\hat{\mu}_i$: Number of predicted CD4+ cells log-transformed
- $\log(\hat{\mu}_i)$: Predicted number of CD4+ cells in the ith patient

 $\hat{\mu}_i = \exp\left(6.4697 + 0.007824 \times time - 0.08649 \times \sqrt{time} + 0.2301 \times postHAARTtreatment + 0.4815 \times obese - 0.2393 \times highVL - 0.1258 \times mediumVL\right).$

• The actual number of CD4+ cells in which log-transformed predictions are converted back to the original scale

	Parameter estimates (10 imputations)							
Parameter	Estimate	SE	Pr> t	95% confidence limits	Minimum	Maximum		
Intercept	6.459413	0.049830	< 0.0001	(6.36175, 6.55708)	6.458658	6.460775		
Time in month	0.007475	0.000975	< 0.0001	(0.00556, 0.00939)	0.007450	0.007508		
Sqrt_Time	- 0.083647	0.009266	< 0.0001	(-0.10181, -0.06549)	- 0.083982	- 0.083434		
ART initiation (Post)	0.224037	0.012594	< 0.0001	(0.19935, 0.24872)	0.223216	0.225014		
Baseline BMI category	(ref. = normal	weight)						
Obese	0.474714	0.109902	< 0.0001	(0.25931, 0.69012)	0.473892	0.475630		
Overweight	0.024208	0.048971	0.6211	(- 0.07177, 0.12019)	0.023820	0.024529		
Underweight	0.002070	0.078101	0.9789	(- 0.15101, 0.15515)	0.001321	0.003137		
Baseline HIV viral load	category (ref.	=Low VL)						
High VL	- 0.239102	0.051294	< 0.0001	(-0.33964, -0.13857)	- 0.239735	- 0.238839		
Medium VL	- 0.122078	0.045390	0.0072	(-0.21104, -0.03311)	- 0.122251	- 0.121642		
Undetectable	0.142848	0.286259	0.6178	(-0.41821, 0.70391)	0.142510	0.143351		
Number of sexual partners (ref.=stable partner)								
Many partners	- 0.153632	0.092090	0.0953	(-0.33412, 0.02686)	- 0.154667	- 0.152911		
No partner	- 0.046962	0.049227	0.3401	(-0.14344, 0.04952)	- 0.047267	- 0.046691		
Age group in years (ref.	=<20)							
20-29	0.013477	0.031659	0.6703	(- 0.04857, 0.07553)	0.012306	0.014325		
30–39	0.033725	0.034974	0.3349	(- 0.03482, 0.10227)	0.032678	0.034744		
40-49	- 0.005842	0.046177	0.8993	(- 0.09635, 0.08466)	- 0.007790	- 0.004745		
50-59	- 0.052070	0.067501	0.4405	(-0.18437, 0.08023)	- 0.054207	- 0.051024		
≥60	0.206708	0.156046	0.1853	(- 0.09914, 0.51255)	0.205360	0.207553		
Education attainment (ref. = secondary or high school)								
Primary school	- 0.046292	0.089605	0.6054	(- 0.22191, 0.12933)	- 0.046602	- 0.046009		
Residence of participan	t (ref. = urban)						
Rural	- 0.001916	0.038813	0.9606	(- 0.07799, 0.07416)	- 0.002146	- 0.001596		

- This table shows parameter estimates obtained after using the multiple imputation method to deal with missing data.
- This is a statistical technique for handling missing data, creating multiple alternative datasets, performing analyses on each, and then combining the results to give an overall estimate.

Discussion and Conclusion

Discussion & Conclusion

- GLMs extend the standard concept of linear models to outcome variables whose distribution is from a member of the exponential family.
- GLM consists of three components
 - a stochastic component that characterizes the likelihood distribution of the response variable;
 - a linear predictor that is a systematic component portraying the linear model characterized by the explanatory variables;
 - ③ a link function that connect the mean of the response variable to a linear combination of the explanatory variables.

Discussion & Conclusion

- Longitudinal studies, also called mixed-effects models, are used to study changes in the response variable over a relevant interval of time or space and the effects of different factors on these changes.
- The two fundamental issues in longitudinal studies are constructing an appropriate model for the mean and choosing a reasonable but parsimonious model for the covariance structure of longitudinal data.
- Due to the presence of overdispersion in the dataset, a **Negative Binomial Mixed Model (NBMM)** with an unstructured (UN) covariance structure is suitable.

Thank you for listening

Supplementary

UN covariance structure

Supplementary Table 2 Comparison of fixed effects results across different covariance structure using Model 1								
	UN		AR	(1)	CS		То	ер
Covariates	Estimate	SE	Estimate	SE	Estimate	SE	Estimate	SE
Intercept	6.4697	0.04982	6.4724	0.03423	6.4861	0.03410	6.4799	0.03439
Time in month	0.007824	0.000989	0.008516	0.01060	0.01439	0.01051	0.008272	0.01082
Sqrt_Time	-0.08649	0.009307	-0.08950	0.01180	-0.08434	0.01170	-0.08886	0.01201
ART Initiation (Post)	0.2301	0.01238	0.2284	0.01263	0.2363	0.01265	0.2277	0.01264
Baseline BMI category (re	ef.=Normal we	ight)						
Obese	0.4815	0.1113	0.6076	0.07836	0.5097	0.07765	0.6350	0.07813
Overweight	0.02561	0.04975	0.02687	0.03466	0.02072	0.03441	0.02970	0.03448
Underweight	0.005901	0.07927	0.09673	0.05503	0.03837	0.05470	0.09359	0.05481
Baseline HIV viral load ca	tegory (ref.=)	Low VL)						
High VL	-0.2393	0.05157	-0.3307	0.03345	-0.3234	0.03321	-0.3377	0.03330
Medium VL	-0.1258	0.04587	-0.1527	0.03130	-0.1254	0.03112	-0.1567	0.03116
Undetectable	0.1377	0.2901	-0.04788	0.2242	0.1338	0.2256	-0.01985	0.2218
Number of sexual partner	s (ref.= Stable	partner)						
Many partners	-0.1560	0.09394	-0.05213	0.06388	-0.1506	0.06352	-0.04274	0.06393
No partner	-0.04821	0.04993	-0.03423	0.03459	-0.05490	0.03434	-0.03322	0.03438
Age group in years(ref.= <	< 20)							
20-29	0.01166	0.03104	0.02553	0.02516	0.006652	0.02519	0.02065	0.02543
30-39	0.02852	0.03432	0.04911	0.02849	0.03351	0.02850	0.04303	0.02871
40-49	-0.00719	0.04545	0.007849	0.04070	0.01926	0.04068	-0.00114	0.04084
50-59	-0.05694	0.06662	-0.06551	0.06134	-0.03957	0.06135	-0.06503	0.06143
≥ 60	0.2082	0.1532	-0.2185	0.1606	0.2020	0.1601	-0.1844	0.1612
Education attainment (ref	E = Secondary	or high scho	ool)					
Primary school	-0.04509	0.09084	0.1126	0.06341	-0.00666	0.06299	0.09430	0.06306
Residence of participant (ref.= Urban)							
Rural	-0.00373	0.03947	0.003881	0.02707	0.01729	0.02689	0.003076	0.02694

Overdispersion

Visual evidence of overdispersion

Overdispersion

Fit Statistics for Conditional Distribution	Poisson	NB
- 2 log L(CD4 counts/r. effects)	199,670.3	85,320.39
Pearson χ^2	145,017.0	6396.89
Pearson χ^2/DF	20.66	0.91

Table 3. Measure of over-dispersion between Poisson and negative binomial distribution.

