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Background

Interpreting High-Dimensional NGS data using Deep learning
« Deep learning approaches are capable of modeling complex systems with high fidelity
« However, they unfortunately share the drawback of lacking interpretability

» High-dimensional NGS — Low-dimensional Data (Deterministic AE, Variational AE)
« Latent embeddings do not have inherent biological meaning.
« Further methods are required to understand mechanisms captured by these models

*AE : Auto Encoder




Background

Opening the ‘black box’ : Two competing trends
 First trend : post hoc interpretability

« Aims to identify genes that were most important contributors to each latent variable learned by an
autoencoder. (Integrated Gradients [12], Way et al. [14], Svensson et al. [15])

« May be very difficult as autoencoders are known to learn entangled representations, meaning that
each latent variable may capture multiple biological processes




Background

Opening the ‘black box’ : Two competing trends

« Second trend (recent) : biologically-constrained modeling
« Aims to create models with latent spaces that are inherently interpretable

« Use prior information to define sparse connections between input nodes corresponding to genes, and
latent nodes corresponding to biological pathways (or other pre-defined groups).

 Variety of recent works have proposed using biologically-constrained autoencoders to model gene
expression data [20—-22]




Background

Aim
« Qur paper aims to demonstrate that these two trends in biological interpretability are not mutually
exclusive

* Principled attribution methods can improve the analysis of unsupervised models of gene
expression analysis by quantifying the importance of pathways

« PAUSE: principled feature attribution for unsupervised gene expression analysis




Model architectures — Traditional Auto Encoder

« The weights in the encoder and decoder is fixed. (deterministic encoder and decoder)

 When input x; is given, latent variable z; and reconstructed data x; always gets the same value

Loss function of AE : Reconstruction loss

iti ncoder
Tradltlonal autoencoders L(X,f) = “x — 2”2 Loss function doesn't
use any labels!!
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Model architectures — Variational Auto Encoder (VAE)

« VAE is probabilistic twist on autoencoders

« Sample from the mean and standard deviation to compute latent sample

VAEs: key difference with traditional autoencoder

mean
vector

I_\

U
2| -
o

,_1

standard deviation
vector




Model architectures — Variational Auto Encoder (VAE)

VAE optimization
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Encoder computes: qq (z|x) Decoder computes: pg (x|2)
L(¢, 0, x) = (reconstruction loss) + (regularization term)

logpe (%) > Eq(z)x;0)[logp(x|z; ¥)] — KIL(q(z|x; 6)||p(2)) = —LELBO- (1)




Model architectures — Variational Auto Encoder (VAE)

- Standard VAEs are a pair of neural networks, an encoder with parameters 6 and a decoder with
parameters Y, optimized to learn a low-dimensional distribution over latent variables z from high-

dimensional data x

» These networks are trained by stochastic gradient descent to maximize the variational lower
bound on the likelihood of the data




Model architectures — pathway module VAE
(pPmVAE)

» the pmVAE approach uses sparse masked weight
matrices to separate the weights of the encoder and
decoder neural networks into non-interacting modules
for each pathway.

« The network’s first layer is masked with a binary
assignment mask, which ensures that each gene is only
connected with non-zero weight to the hidden nodes of
the modules corresponding to its pathways.
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Model architectures — conditional pathway module VAE (cpmVAE)

* In our experiments on bulk RNA-seq brain data, the brain gene expression samples were
compiled from multiple data sources.

* In order to disentangle the batch effects, represented by a vector ¢, from the biological variation
of interest, we wanted to train a conditional pathway module VAE (cpmVAE)

* maximize the conditional variational lower bound objective:

logpe (x|c) > E;(z1x,c.0)[logp(xlc, z; )] — KLL(q(z|x, c; 0)||p(z|c)) = —LE1po-

* These condition labels are passed to each pathway module in the encoder, and again to each
pathway module in the decoder.




Model architectures — conditional pathway module VAE (cpmVAE)
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Attributions - Integrated Gradient

Gradients saturate over F(x)

10 =
Gradients =0
X not important

Gradients >0 =
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F(x) - model true class predicted probability
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IntegratedGrads ™" (x) := (x; —x7) X X1, s

1. Generate alphas a
2. Generate interpolated images = (x'+ £ x(x—x"))

3. Compute gradients between model F output predictions with respect to

input features = OF (interpolated path inputs)
8x,-
4. Average integral approximation = ;" gradients x

5. Scale integrated gradients with respect to original image = (x; —x’) x integrated gradients
The reason this step is necessary is to make sure that the attribution values accumulated
across multiple interpolated images are in the same units and faithfully represent
the pixel importances on the original image.
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Attributions

« We propose a novel attribution method to understand which latent factors are important in
unsupervised neural networks, based on Integrated Gradients and the Aumann-Shapley value

« To quantify the contribution of a particular latent node i

1 / /
athwa 0l(z' +a(z —2))
@ = @ x [ I N,

« from local pathway importance to global pathway importance we can take the expected value of
the local attributions over the samples in the original data:

(b?athway = [ 5] ¢lpathway @)].
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Attributions

« We propose a novel attribution method to understand which latent factors are important in
unsupervised neural networks, based on Integrated Gradients and the Aumann-Shapley value

+ To quantify the contribution of a particular gene node j for pathway k

da,

1 / W
¢jgene,k(x) _ (xj _ x},) » / 3ﬁ< x4+ alx —x'))

a=0 ax,-

 from local gene importance to global gene importance we can take the expected value of the
local attributions over the samples in the original data:
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Datasets

» Peripheral blood mononuclear cells (PBMC) INF-3

* 13,576 samples with 979 genes. The dataset contains 6359 control and 7217 stimulated cells

* Intestinal epithelium
* 5,951 samples with 2,000 genes. The dataset contains 3240 control and 2711 H.polygyrus-stimulated cells

« Jurkat anti-CD3/anti-CD28

« 1288 samples with 2139 genes. This dataset contains 607 control and 681 stimulated cells

* Bulk brain expression datasets
* we used data from the ROSMAP, ACT, HBTRC, MAYO, and MSBB studies




Overview of PAUSE approach

* ltis first helpful to understand a representative unsupervised workflow
 Traditional Approach like PCA

1. Learn a low-dimensional representation of gene expression data

2. Rank the latent dimensions according to the amount of variance in the original data explained by each dimension

3. Interpret the biological meaning of the most important dimensions.

a) Outline of unsupervised workflow

(1) Learn a low-dimensional representation (2) Rank the latent dimensions (3) Interpret the important dimensions
‘ Aznxl Xl
Principal Component PCs intrinsically Examine

Analysis ranked Gene Loadings
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Overview of PAUSE approach

* While deep learning-based autoencoders are able to reconstruct gene expression with high
fidelity, they fall short at steps 2. and 3. in the workflow described above.

* Interpretable Autoencoders : model that learns a latent representation with dimensions that
correspond to biological pathways or functions.

» improve step (3) for deep learning models by constraining the learned representation

 hard constraint or soft constraint using regularization




Overview of PAUSE approach

« While deep learning-based autoencoders are able to reconstruct gene expression with high fidelity,
they fall short at steps 2. and 3. in the workflow described above.

* Interpretable Autoencoders : model that learns a latent representation with dimensions that
correspond to biological pathways or functions.

b) Interpretable autoencoders use sparse architectures to give latent dimensions biological interpretations

Standard Autoencoder Interpretable Autoencoder

Sparse Connections [atent dimensions
to Modules correspond

Meaning of latent variables is opaque to pathways

Dense connections throughout

Dense Connections
within Modules



Overview of PAUSE approach

* Interpretable autoencoder models have latent nodes corresponding to biological pathways, but
there is no clear-cut way to identify which pathways are the most important in a dataset (step 2).

» Our approach, principled attribution for unsupervised gene expression analysis (PAUSE), aims to
improve the utility of “interpretable” deep autoencoder models using techniques from the area of

feature attribution

» Using approaches from game theory for credit allocation among players in cooperative games, we
derive a novel pathway attribution that can be thought of analogously to the eigenvalues in PCA




c) Principled attributions rank latent dimensions and aid in the interpretation of important dimensions

Integrate gradient of loss with respect
to latent respresentation from baseline
to observed datapooints

Refactor loss as
function of latent variables
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Pathway attributions : Identify major sources of variation

« To empirically validate that the pathways identified, we adapt two benchmarks from the feature
attribution literature

« imputation benchmark : measures the extent to which the reconstruction error of a trained
biologically-constrained autoencoder model increases when the learned embeddings for each
pathway are replaced with an uninformative mean imputation

* retrain benchmark : measures the extent to which pathways identified as important can
reconstruct gene expression space when used to train a new model




Pathway attributions : Identify major sources of variation
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Pathway attributions : Identify biologically relevant pathways

« We wanted to demonstrate that these major sources of transcriptomic variation corresponded to
biologically interesting pathways.

« We therefore compared the top pathways found by our unsupervised approach to the top
pathways according to a more conventional, supervised analysis




Pathway attributions : Identify biologically relevant pathways

« PBMC : untreated vs stimulated with interferon-3
« pathways related to interferon-8 (IFN-f3) stimulation should be important

« compare the pathways identified as important by our unsupervised analysis with the pathways
identified by supervised analysis.

» For a supervised metric of pathway importance, we considered the accuracy attained by a logistic
regression model trained on the pathway latent nodes




Identify biologically relevant pathways : PBMC a PBMC Top Pathways
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Identify biologically relevant pathways : Intestinal

* mouse intestinal epithelial cells : untreated vs parasitic
roundworm Heligmosomoides polygyrus

« Again, there is substantial overlap in the top pathways
identified by our unsupervised approach and supervised
metrics

* The fact that some pathways are highlighted by supervised
attributions, but not by our unsupervised approach, shows that
these two approaches should be considered complementary.
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Gene attributions : Increase latent node interpretability

+ In addition to identifying important pathways, the interpretability of biologically-constrained
models can be enhanced through the application of gene attribution values

« These gene attribution values help identify which gene expression values are important
determinants of each learned pathway representation.

* We looked at the pairwise correlations between the activations of each of the four latent nodes in
the TCR Signaling pathway module over all cells
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Biological Findings : mitochondrial oxidative phosphorylation in AD

« We wanted to use our PAUSE approach to gain insight into the biology of Alzheimer’s disease
(AD)

« Because of the diversity of data sources, it was essential to account for batch effects so that the
embedding learned by our model represented true biological variation rather than technical
artifacts

 When a standard pmVAE model is trained on the data, we see that the latent space separates
samples predominantly according to the data source from which the samples were derived




Biological Findings : mitochondrial oxidative phosphorylation in AD

 To control for these dataset effects, we therefore modified the pmVAE architecture to be a
conditional pathway module VAE (cpomVAE)

* In addition to the set of gene expression values corresponding to a particular pathway, each
module takes as an additional input a vector of labels describing any unwanted sources of
technical variation
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Biological Findings : mitochondrial oxidative phosphorylation in AD

« PAUSE pathway attributions showed Hallmark Oxidative Phosphorylation pathway was the single
pathway explaining the most observed variation in the biological latent space

 When we look at the top 20 genes by gene attribution, we see four genes, NDUFS3, NDUFAS,
NDUFS7, and NDUFAZ2, that are all part of mitochondrial respiratory Complex |, which is
responsible for the oxidation of NADH in the mitochondria
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Biological Findings : mitochondrial oxidative phosphorylation in AD

» While primary defects in oxidative phosphorylation are not thought to be likely causes of AD, and
mitochondrial dysfunction is in fact thought to be the result of AB and tau protein accumulation

» These changes in expression of oxidative phosphorylation genes likely play an important role in
the pathophysiology of AD




Experimental Validation: mitochondrial Complex | as a potential therapeutic target

* In order to verify that the genes and pathways identified by PAUSE are biologically-relevant, we had to
experimentally validate our findings

« Used a special strain of the worm(C. elegans) that has been genetically modified to produce the human
APB1-42 protein, which leads to symptoms similar to Alzheimer's in humans

« They then used a technique called RNA interference (RNAI) to "turn off" 13 worm genes that are similar
to human genes involved in a cellular component called Complex |, which is part of the mitochondria

 Turning off these genes delayed the onset of paralysis in the worms, suggesting that these genes, and
by extension, the human genes they're similar to, could play a role in the development of Alzheimer's

disease.
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Fig. 6 C. elegans AB proteotoxicity assay validates importance of mitochondrial Complex | genes. a Paralysis
curves for the reciprocal best orthologs of human Complex | genes. All tested RNAi conditions significantly
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indicate standard error of the mean across experiments. * p-value < 0.05. ** p-value < 0.01. *** p-value < 0.001




Summary

« By combining principled attributions with pathway-based representations, our PAUSE approach
enables the interpretable and fully unsupervised analysis of gene expression datasets

* In both the single cell and the bulk RNA-seq datasets analyzed, we found that the major sources
of variation quantified by our pathway attribution approach corresponded to biologically-
meaningful processes

« Confirmed by known ground-truth perturbations in the single cell analyses and by experimental
validation in the AD dataset.




Strengths

» Unlike existing methods, our pathway attributions do not depend on having labeled data to
identify important pathways

« Furthermore, this approach can be applied to arbitrarily deep networks, unlike existing methods
which depend on having a fully linear network or a linear decoder.




Limitations

« Do not always capture all pathways that differ significantly between two groups of interest, if
those pathways do not represent major sources of expression variation

« An assumption of our approach is that pathway databases provide good representations of the
underlying biology of the system being modeled.




Conclusion

« Combining principled attributions with interpretable model architectures will prove to be a broadly
useful strategy in domains beyond gene expression

« While biological pathways represent one useful representation, they will not necessarily be the
only meaningful representation for all data types.

* |n particular, translating interpretable approaches to multi-modal datasets will be an important
future direction
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Thank you for listening. Feel free to ask any questions now &




