DeepPINK: reproducible feature selection in deep neural networks[1]

Lu, Yang, et al. NeurIPS volume 31 (2018)

Presenter: Dahun Seo¹

March 7, 2024

¹Department of Statistics, Seoul National University

DeepPINK: reproducible feature selection in deep neural networks

Yang Young Lu * Department of Genome Sciences University of Washington Seattle, WA 98195 ylu4656uw.edu Yingying Fan * Data Sciences and Operations Department Marshall School of Business University of Southern California Los Angeles, CA 90089 fanyingy@marshall.usc.edu

Jinchi Lv Data Sciences and Operations Department Marshall School of Business University of Southern California Los Angeles, CA 90089 jinchilv@marshall.usc.edu

William Stafford Noble

Department of Genome Sciences and Department of Computer Science and Engineering University of Washington Scattle, WA 98195 william-noble@uw.edu

Contents

- 1. Introduction
- 2. Methods
- 3. Simulation studies
- 4. Real data analysis
- 5. Discussion
- 6. References

1. Introduction

Introduction

Deep neural network (DNN)

- Pros: Outstanding empirical performance in both supervised and unsupervised machine learning tasks
- Cons: Hard to interpret the Model's output (Black Box)

Existing methods for feature selection in DNN

- Most exising method focus on the feature importance in DNN using a simple idea "locally perturb the input to see how the prediction changes".
- However, these are susceptible to noise and lack of robustness. (Small random perturbation can dramatically change the feature importance.)

And hard to control FDR.

Introduction (cont.)

p-value?

If there is a method that produces meaningful p-value for each features, we can use it along with FDR procedure.

However, this is still completely unknown.

knockoff framework

knockoff framework is a feature selection framework with FDR control that do not need any p-values.

Goal

- Develop a feature selection method of DNNs by incorporating the idea of knockoff framework
- They named the new method "DeepPINK".

Background (FDR)

FDR

Let S₀ ⊂ {1,..., p} be the true feature set. Define FDP (false discovery proportion) and FDR (false discovery rate):

$$\mathsf{FDP} = rac{|\widehat{S} \cap S_0^{\mathbb{C}}|}{|\widehat{S}| \lor 1}$$

 $\mathsf{FDR} = \mathbb{E}[\mathsf{FDP}]$

where \widehat{S} be a set of features selected by some feature selection procedure.

To control the false discovery in data analysis, we have to develop a feature selection method that can control FDR.

Background (knockoff framework)

Definition 1 (model-X knockoff features)

Model-X knockoff features for the family of random variables $X = (X_1, \dots, X_n)^{\top}$ are a new family of random variables $\widetilde{X} = (\widetilde{X}_1, \dots, \widetilde{X}_n)^{\top}$ that satisfies two properties: 1 $(X, \widetilde{X})_{swap(S)} \stackrel{d}{=} (X, \widetilde{X})$ for any subset $S \subset \{1, \dots, p\}$, where swap(S) means swapping X_i and \widetilde{X}_i for each $j \in S$. 2 $\widetilde{X} \perp \!\!\!\perp Y \mid X$ (the knockoff variables \widetilde{X} is independent of the response variable given X.)

In simple terms (not strictly precise), knockoff variables are variables that are unrelated to the response variable Y but share similar characteristics with the original variables.

Background (knockoff framework) (cont.)

How to generate knockoff features?

There are various methods to generate \widetilde{X} .[2]–[4]

knockoff statistic

- Construct the knockoff statistics $W_j = g_j(Z_j, \widetilde{Z}_j)$ for $1 \le j \le p$ where Z_j and \widetilde{Z}_j represent feature importance measures for the *j*th feature X_j and its knockoff \widetilde{X}_j respectively and $g_j(\cdot, \cdot)$ is any antisymmetric function.
- A desirable property for W_j is that important features are expected to have large positive values, whereas unimportant ones should have small values around 0.

Background (knockoff framework) (cont.)

threshold for FDR control

To determine which variables are important, we have to decide threshold δ .

$$\widehat{S} = \{j: |W_j| \geq \delta\}$$

To control the FDR under $q \in (0, 1)$, set the threshold δ :

$$\delta = \min\left\{t \in \mathcal{W}: \frac{1 + |\{j: W_j \leq -t\}|}{1 \vee |\{j: W_j \geq t\}|} \leq q\right\}$$

where $\mathcal{W} = \{|W_j| : 1 \le j \le p\} \setminus \{0\}.$

2. Methods

Proposed method: DeepPINK

DeepPINK

Application of knockoff framework on DNN

DNN structure of DeepPINK

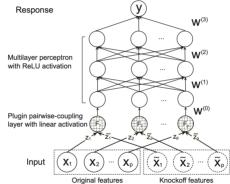
▶ They developed "plugin pairwise-coupling layer" F_1, \ldots, F_p for each variables $(X_1, \widetilde{X}_1), \ldots, (X_p, \widetilde{X}_p)$.

$$F_j(X_j,\widetilde{X}_j) = z_j X_j + \widetilde{z}_j \widetilde{X}_j$$

Intuitively, z_j being much larger than \tilde{z}_j provides some evidence that the *j*th feature is important, whereas similar values of z_j and \tilde{z}_j indicate that the *j*th feature is not important.

Proposed method: DeepPINK (cont.)

They proposed 2 hidden layer having p hidden node DNN structure.



Let w be $p \times 1$ vector such that

 $w = W^{(0)} \odot (W^{(1)} W^{(2)} W^{(3)})$ 11/24

Proposed method: DeepPINK (cont.)

Proposed knockoff statistic

Feature importance measures:

$$Z_j = z_j \times w_j$$
 and $\widetilde{Z}_j = \widetilde{z}_j \times w_j$

Assymetric function g_j :

$$g_j(x_1,x_2) = x_1^2 - x_2^2 \\$$

for all $j = 1, \ldots, p$.

Thus, we have knockoff statistics W_i :

$$W_j = Z_j^2 - \widetilde{Z}_j^2$$

for all $j = 1, \dots, p$.

3. Simulation studies

Simulation setting

Explanatory variables and error

- explanatory variables x_i are from $\mathcal{N}(0,\Sigma)$ with $\Sigma^{-1}=(0.5^{|j-k|})_{1\leq j,k\leq p}$
- letter error ε_i follows standard normal distribution.

True coefficient β_0

▶ $\beta_0 \in \mathbb{R}^p$ nonzero elements randomly located with $s = \|\beta_0\|_0$ fixed.

• nonzero elements are randomly chosen from $\{-1.5, 1.5\}$.

Simulation setting (cont.)

Two scenarios:

1 Linear:

$$Y_i = x_i^\top \beta_0 + \varepsilon_i, \quad i = 1, \dots, n$$

where s = 30

2 Single-Index (non Linear):

$$Y_i = g(x_i^\top \beta_0) + \varepsilon_i, \quad i = 1, \dots, n$$

where s = 10 and $g(x) = x^3/2$.

Other competitive models with feature importance measure:

- DNN without "plugin pairwise-coupling layer"
- DeepLIFT[5] with the multiplier score
- random forest (RF) with feature importance score
- linear kernel SVM with coefficient

Simulation results

repetition number: 20

ln all scenarios, FDR is controlled at q = 0.2.

		DeepP	INK			ML	Р			DeepI	JFT			RI	7			SV	R	
p	Linea	r	Single-I	ndex	Linea	ır	Single-I	ndex	Linea	ır	Single-I	ndex	Linea	ır	Single-I	ndex	Line	r	Single-I	Index
	FDR	Power	FDR	Power																
50	0.046	1	0.13	0.98	0.15	1	0.17	0.89	0.16	1	0.24	0.9	0.005	0.45	0	0	0.18	1	0.180	0.81
100	0.047	1	0.08	1	0.048	1	0.056	0.26	0.16	1	0.13	0.47	0.016	0.61	0.025	0.045	0.22	1	0.094	0.26
200	0.042	0.99	0.042	1	0.11	1	0	0	0.24	0.96	0.034	0.067	0.013	0.54	0.020	0.045	0.21	1	0.061	0.05
400	0.022	0.97	0.022	1	0.29	0.95	0	0	0.034	0.5	0.039	0.069	0.017	0.53	0.033	0.050	0.22	1	0.083	0.01
600	0.031	0.95	0.046	1	0.17	0.8	0.014	0.013	0.003	0.26	0.068	0.16	0.023	0.56	0.11	0.095	0.19	1	0	0
800	0.048	0.95	0.082	1	0.037	0.62	0.016	0.068	0	0.17	0.16	0.24	0.022	0.61	0.061	0.12	0.22	0.98	0	0
1000	0.023	0.97	0.065	1	0.007	0.4	0.037	0.16	0	0.12	0.013	0.33	0.029	0.59	0.081	0.17	0.15	0.67	0	0
1500	0.007	1	0.065	1	0.002	0.41	0.068	0.25	0.001	0.32	0.13	0.44	0.045	0.58	0.098	0.17	0.064	0.043	0	0
2000	0.026	0.99	0.098	1	0.023	0.4	0.063	0.35	0.015	0.37	0.1	0.56	0.033	0.65	0.046	0.14	0.04	0.002	0	0
2500	0.029	0.97	0.067	1	0.21	0.5	0.042	0.35	0.088	0.58	0.32	0.47	0.034	0.62	0.11	0.18	0.02	0.005	0	0
3000	0.046	0.97	0.051	1	0.11	0.43	0.046	0.31	0.069	0.46	0.14	0.44	0.05	0.65	0.087	0.17	0.05	0	0	0

Table 1: Simulation results for linear model and the Single-Index model.

4. Real data analysis

Application to HIV-1 data

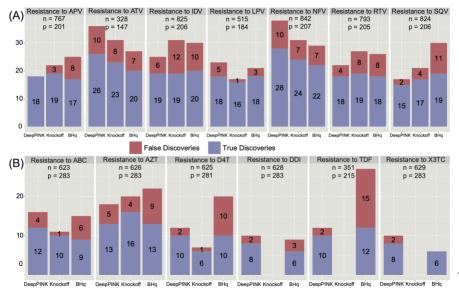
Goal

Identify mutation associated with drug resistance level

Data

- 13 datasets (13 kinds of drug)
- response variable: Drug resistance level
- explanatory variables: mutation (present or absence)
- Actually, we knew the associated mutation for each drug. (So we can calculate the false discovery rate)

Application to HIV-1 data (cont.)



18/24

Application to gut microbiome data

Goal

Identify the important nutrient intake and the important gut microbiome that are associated with BMI

Data

$$\blacktriangleright \ n = 98, p = p_1 + p_2 = 301$$

- response variable: BMI
- \blacktriangleright explanatory variables: nutriant intake $(p_1=214)$ and CLR transformed gut microbiome $(p_2=87)$

Application to gut microbiome data (cont.)

Nutrient intake	Bacteria genera					
Micronutrient	Reference	Phylum	Genus	Reference		
Linoleic	[7]	Firmicutes	Clostridium	26		
Dairy Protein	29	Firmicutes	Acidaminococcus	26		
Choline, Phosphatidylcholine	31	Firmicutes	Allisonella	26		
Choline, Phosphatidylcholine w/o suppl.	31	Firmicutes	Megamonas	25		
Omega 6	39	Firmicutes	Megasphaera	43		
Phenylalanine, Aspartame	41	Firmicutes	Mitsuokella	43		
Aspartic Acid, Aspartame	41	Firmicutes	Holdemania	[30]		
Theaflavin 3-gallate, flavan-3-ol(2)	42	Proteobacteria	Sutterella	13		

5. Discussion

Summary

Goal

Develop a feature selection method of DNNs by incorporating the idea of knockoff framework

Method

- They proposed "plugin pairwise-coupling layer" in DNN structure.
- Because of "plugin pairwise-coupling layer", DeepPINK achieves FDR control with much higher power than the naive combination of the knockoffs idea with a vanilla MLP.

Thank you

6. References

References

- Y. Lu, Y. Fan, J. Lv, and W. Stafford Noble, "Deeppink: Reproducible feature selection in deep neural networks," Advances in neural information processing systems, vol. 31, 2018.
- [2] R. F. Barber and E. J. Candès, "Controlling the false discovery rate via knockoffs,", 2015.
- [3] E. Candes, Y. Fan, L. Janson, and J. Lv, "Panning for gold: 'model-x' knockoffs for high dimensional controlled variable selection," *Journal of the Royal Statistical Society Series B: Statistical Methodology*, vol. 80, no. 3, pp. 551–577, 2018.

References (cont.)

- [4] Y. Romano, M. Sesia, and E. Candès, "Deep knockoffs," Journal of the American Statistical Association, vol. 115, no. 532, pp. 1861–1872, 2020.
- [5] A. Shrikumar, P. Greenside, and A. Kundaje, "Learning important features through propagating activation differences," in *International conference on machine learning*, PMLR, 2017, pp. 3145–3153.