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Introduction: Previous multi-omics integration methods

Similarity-based methods
▶ Spectral Clustering
▶ Similarity Network Fusion(SNF)

Dimension reduction-based methods
▶ Principle Component Analysis(PCA)
▶ Canonical Correlation Analysis(CCA)
▶ Non-negative Matrix Factorization(NMF)

AI-based methods
▶ Autoencoder-based network
▶ Graph Convolutional Network(GCNs)
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Introduction: Main idea of this proposed methods

Limitations of existing multi-omics integration framework
▶ Model overfitting: The number of features is much greater than the

number of samples.
▶ False positive: Noisy features are easily to be selected to contribute

to models, leading to false positives.
▶ Generalization ability: Poor Generalizability on different datasets

Novelty of this proposed framework
▶ Feature Selection with Distribution(FSD) module: Reduce the

noise of multi-omics data in the data-preprocessing procedure
▶ Attention Multi-omics Intergratation (AttentionMOI): Provide a

biologically informed multi-omics integration framework
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Methods: Data acquisition

For task 1: Kidney Cancer Subtype Identification
▶ KIPAN dataset (concluding three subtypes: KICH, KIRC, KIRP)

For task 2: Cancer Survival Time Prediction
▶ 15 types of cancer datasets from TCGA project
▶ A Glioblastoma(GBM) dataset and a Head and Neck squamous cell

carcinoma(HNSC) dataset from the CPTAC project (validation)

Only patients with all three omics data were selected for prediction
▶ Copy Number Variation (CNV)
▶ Methylation (Met)
▶ RNA Transcriptome (RNA)
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Methods: Overview of the framework

6 / 32



Methods: Baseline Feature selection methods1

Select a subset of features which can efficiently describe the input data
while reducing effects from noise or irrelevant variables and still provide
good prediction results.

Wrapper methods

Filter methods

Embedded methods

1Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods”. In: Computers & Electrical Engineering
40.1 (2014), pp. 16–28.
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Methods: Baseline Feature Selection Methods

Wrapper methods use feature subsets to train the model and selects
or excludes features based on the model’s performance

▶ Heuristic Search Algorithms(evaluate different subsets to optimize the
objective function)

⋆ Simulated Annealing (SA)
⋆ Genetic Algorithm (GA)

Filter methods use variable ranking techniques as the principle
criteria for variable selection

▶ ANOVA

Embedded methods include variable selection as part of the training
process without splitting the data

▶ Recursive Feature Elimination(RFE)
▶ LASSO

8 / 32



Methods: FSD module

A subset Xsub was randomly selected from the training dataset X .
Then, three distribution tests were performed as follows:

p1 ← KS(Xsub,X ),

p2 ← KS(Xa,Xb, . . . ,Xn),

p3 ← KS(Xsub,a,Xsub,b, . . . ,Xsub,n)

▶ KS indicates the Kolmogorov–Smirnov test
▶ p1, p2, and p3 represent P-values of the statistical tests, respectively
▶ Xa,Xb, . . . ,Xn are clinical classification (a, b, . . . , n) data in X
▶ Xsub,a, . . . ,Xsub,n are clinical classification (a, b, . . . , n) data in Xsub

A feature was considered to be low-noise and high-informative if
p1 > k , p2 < k , and p3 < k , where k is 0.05 by default.
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Supplement2

Kolmogorov–Smirnov test

A non-parametric statistical test used to assess whether a sample
comes from a specific distribution.

H0: the sample data follows the specified theoretical distribution.

Test statistic: maximum vertical deviation between the sample CDF
and the theoretical CDF.

2Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness of fit”. In: Journal of the American statistical Association
46.253 (1951), pp. 68–78.
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Methods: FSD module

To obtain a more stable feature selection result, they repeated the above

process m times

n represents the number of times that a feature met the above conditions

If n/m > j , the feature proceeds to the subsequent analysis, where j denotes

the threshold value
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Methods:FSD module + Baseline FS methods

Combinations of FSD and each traditional method are performed to
explore whether it is helpful for feature sekection.

ANOVA

LASSO

PCA

RFE

Genetic Algorithms(GA)

Simulated Annealing (SA)
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Methods: AttentionMOI model

1-4: Put DNA and RNA level features into two attention layers

5: Concatenate through an attention layer to weight different features

6: Classification task was realized by the fully connected layer
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Methods: Biological interpretation

To calculate the contribution of features to the model output, two
explaining methods were applied.

SHapley Additive exPlanations (SHAP)
▶ explain models building by RF, SVM and XGBoost

Integrated gradient (IG)
▶ interpret the MLP and AttentionMOI model
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Supplement3

SHapley Additive exPlanations (SHAP)

A method used to interpret model predictions, particularly widely
employed in black-box models and ensemble learning

Calculate the average contribution of each feature to the model
output based on shapley value:

ϕi (f ) =
∑

S⊆N\{i}

|S |!(|N| − |S | − 1)!

|N|!
[f (S ∪ {i})− f (S)]

▶ N represents the set of features, and |N| is the number of features.
▶ S is any subset of N that does not include i .
▶ f (S) represents the model’s output for a given subset S .
▶ ϕi (f ) is the Shapley value for feature i , representing the average

marginal contribution across all possible subsets.

3Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predictions”. In: Advances in neural
information processing systems 30 (2017).
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Supplyment4

Integrated Gradient (IG)

Evaluate the contribution of each input feature on the deep learning
model’s output by integrating over the input features.

IGi (f ) = (xi − x ′i )×
∫ 1

α=0

∂f (z+ α× (x− x′))

∂zi
dα

Where:
▶ f is the model’s output.
▶ xi is the i-th feature value of the input.
▶ x ′i is the i-th feature value at some baseline state.
▶ z is a state along the path, where zi = x ′i + α× (xi − x ′i ).
▶ ∂f (z)

∂zi
is the partial derivative of the model output with respect to zi .

4Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep Networks”. In: Proceedings of the 34th
International Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, June 2017, pp. 3319–3328.
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Results
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Results: 1.Denoising of transcriptome data using FSD

Applied the FSD for GBM survival group prediction using the
transcriptome data from TCGA and CPTAC

▶ Long Time Survial(LTS)
▶ Non-Long Time Survival (non-LTS)

Compared the performance based on four machine learning models
including MLP, RF, XGBoost and SVM with features selected by
FSD, ANOVA, RFE, LASSO, PCA.
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Results: 1.Denoising of transcriptome data using FSD

Figure A: TCGA-GBM Figure B: CPTAC-GBM

When the FSD module is introduced, all models obtain better performance

regardless of the feature selection method used

LASSO-based methods obtained the worst stability, while RFE-based

models obtained better performance and stability
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Results: 1.Denoising of transcriptome data using FSD

Compared the t-SNE visualized GBM gene expressions of two survival

groups with different gene expression inputs. Specifically, genes without

selection, RFE selected genes and FSD+RFE selected genes.

Genes selected from the FSD+RFE method achieved the highest

KL-divergence score after t-SNE decomposition, indicating that

FSD+RFE could better differentiate GBM survival groups
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Results: 2.Performance of FSD under different omics data

Figure: (A/C) Comparison of AUC under RF model using different combinations
of omics in two tasks.

Figure: (B/D) Comparison of AUC under RF model between RFE and FSD +
RFE selected features in two tasks based on RNA+Met+CNV data.
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Results: 2.Performance of FSD under different omics data

Combined prediction of multi-omics achieved better average AUC

performance than single omic

FSD module further improved the prediction performance under

multi-omics data
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Results: 3.The generalizability of FSD

Comparison of AUC using RFE model and FSD + RFE selected
features in prediction of survival among different TCGA cancer types.
P-value calculated through Mann–Whitney-U test.

▶ p-value < 0.05: ∗
▶ p-value < 0.01: ∗∗
▶ p-value < 0.001: ∗ ∗ ∗

Among 15 cancer types, 12 cancers using FSD + RFE to select
features improved performance significantly.

High generalization ability

22 / 32



Results: 4.FSD selected feature as potential markers I

Figure: Feature importance of FSD+RFE / RFE selected features

1 Conducted SHAP analysis to evaluate the contributions of features

identified by FSD +RFE and RFE under the RF model

▶ The estimated feature importances of the top 10 features selected by
RFE differed slightly and they did not contribute much
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Results: 4.FSD selected feature as potential markers II

Figure C: FSD+RFE Figure D: RFE

2 Displayed distributions of those features to explore how those top
features varied between classes.

▶ p-value calculated through Mann–Whitney-U test.
▶ All top 5 FSD + RFE selected features significantly differentiate

between classes.
▶ Among the top 5 RFE selected features, only one feature significantly

different between classes.
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Results: 4.FSD selected feature as potential markers III

3 Kaplan-Miere curves and Log-Rank tests were conducted.

▶ All top 5 features selected by FSD + RFE(Figure A) were significantly
influential to patients’ survival while none of the features selected by
RFE(Figure B) were influential to patients’ survival
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Results: 4.FSD selected feature as potential markers IV

4 2-year survival ROC estimated by top10 features(C): FSD + RFE selected

features achieved higher AUC

5 Univariate Cox regression analysis(D): 58.3% features selected by RFE +

FSD were significantly associated with patient hazard, while 11.5% for RFE

6 There were clearer patterns of omics data values for REF + FSD selected

features when estimated risk scores of patients increased(E/F)

The above results all indicated that FSD selected features could be
potential prognostic markers
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Results: 5.AttentionMOI improved model performance I

When FSD threshold became smaller, the number of features became larger

when only hundreds of features were selected for the model, traditional

machine learning methods tend to perform better

AttentionMOI performed better when feature number is large
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Results: 5.AttentionMOI improved model performance II

To further evaluate the performance of AttentionMOI, compared it with ML
algorithms and current DL multi-omics integration algorithms, MOANNA
and MOGONET(under threshold=0.2).

▶ MOANNA is an Autoencoder-based framework.(2023)

▶ MOGONET is an GCN-based framework.(2021)
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Results: 5.AttentionMOI improved model performance III

Figure: AUCs obtained from different
models under FSD threshold=0.2

Among 15 TCGA cancer types,

AttentionMOI outperformed other

models with higher AUC in 12 cases
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Conclusion
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Conclusion I

The key contributions of this framework

1 Addressing the Curse of Dimensionality and noisy features with FSD

module: by selectively choosing biologically relevant features

2 Robust Multi-Omics Integration with AttentionMOI: improves the

integration process by weighting the influence of different omics data.
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Conclusion II

Limitations of this framework

1 Modality missing: If the DNA module or RNA module is missing,
the framework will resemble an MLP model, losing interactions of
omics data.

2 Interpretation of the model: Features from different omics are
interpreted separately, but they may contribute to certain phenotype
together while this model does not take the joint functions into
consideration.
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Conclusion III

Future Research Prospects

1 Modality missing: stagewise pretraining by single modality data with
masked data modeling or crossmodality representation of multi-omics
data may reduce the dependence of the model on the data

2 Interpretation of the model: as biological functions are realized in
regulatory networks, it’s possible to represent the associations among
omics using network to develop more interpretable models for
multi-omics integration
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