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Introduction: Previous multi-omics integration methods

@ Similarity-based methods

» Spectral Clustering
» Similarity Network Fusion(SNF)

@ Dimension reduction-based methods

» Principle Component Analysis(PCA)
» Canonical Correlation Analysis(CCA)
» Non-negative Matrix Factorization(NMF)

@ Al-based methods

» Autoencoder-based network
» Graph Convolutional Network(GCNs)
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Introduction: Main idea of this proposed methods

@ Limitations of existing multi-omics integration framework
» Model overfitting: The number of features is much greater than the
number of samples.
» False positive: Noisy features are easily to be selected to contribute
to models, leading to false positives.
» Generalization ability: Poor Generalizability on different datasets

@ Novelty of this proposed framework
» Feature Selection with Distribution(FSD) module: Reduce the
noise of multi-omics data in the data-preprocessing procedure
» Attention Multi-omics Intergratation (AttentionMOI): Provide a
biologically informed multi-omics integration framework






Methods: Data acquisition

@ For task 1: Kidney Cancer Subtype Identification
» KIPAN dataset (concluding three subtypes: KICH, KIRC, KIRP)

@ For task 2: Cancer Survival Time Prediction

» 15 types of cancer datasets from TCGA project
> A Glioblastoma(GBM) dataset and a Head and Neck squamous cell
carcinoma(HNSC) dataset from the CPTAC project (validation)

@ Only patients with all three omics data were selected for prediction
» Copy Number Variation (CNV)
» Methylation (Met)
» RNA Transcriptome (RNA)

5 /32



Methods: Overview of the framework
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Methods: Baseline Feature selection methods?

Select a subset of features which can efficiently describe the input data
while reducing effects from noise or irrelevant variables and still provide
good prediction results.

@ Wrapper methods
o Filter methods
o Embedded methods

LGirish Chandrashekar and Ferat Sahin. “A survey on feature selection methods”. In: Computers & Electrical Engineering
40.1 (2014), pp. 16-28.
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Methods: Baseline Feature Selection Methods

@ Wrapper methods use feature subsets to train the model and selects
or excludes features based on the model's performance
» Heuristic Search Algorithms(evaluate different subsets to optimize the
objective function)
* Simulated Annealing (SA)
* Genetic Algorithm (GA)

o Filter methods use variable ranking techniques as the principle
criteria for variable selection

» ANOVA

o Embedded methods include variable selection as part of the training
process without splitting the data

» Recursive Feature Elimination(RFE)
» LASSO



Methods: FSD module

@ A subset X, was randomly selected from the training dataset X.
Then, three distribution tests were performed as follows:

p1 < KS(Xsubax)a
p2 < KS(Xa, Xb, Ce ,Xn),
p3 < KS(XSUb,37 XSUb,b7 v 7Xsub,n)

» KS indicates the Kolmogorov—Smirnov test

> p1, p2, and ps represent P-values of the statistical tests, respectively
> X3, Xp, ..., X, are clinical classification (a, b, ..., n) data in X

> Xaub,as - - - , Xsub,n are clinical classification (a, b, ..., n) data in Xy

@ A feature was considered to be low-noise and high-informative if
p1 > k, pp < k, and p3 < k, where k is 0.05 by default.
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Supplem

Kolmogorov—Smirnov test

@ A non-parametric statistical test used to assess whether a sample
comes from a specific distribution.

@ Hy: the sample data follows the specified theoretical distribution.

@ Test statistic: maximum vertical deviation between the sample CDF
and the theoretical CDF.
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2Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness of fit". In: Journal of the American statistical Association
46.253 (1951), pp. 68-78.
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ds: FSD dule
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@ To obtain a more stable feature selection result, they repeated the above
process m times

@ n represents the number of times that a feature met the above conditions

@ If n/m > j, the feature proceeds to the subsequent analysis, where j denotes
the threshold value
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Methods:FSD module + Baseline
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Combinations of FSD and each traditional method are performed to
explore whether it is helpful for feature sekection.



Methods: AttentionMOIl model

Algorithm 1. Attention Multi-omics Integration

Input: Omics data matrix at DNA and RNA levels. MP represents the
i-th omics matrix at DNA levels, such as methylation; MiR represents the
i-th omics matrix at RNA levels, such as gene expression.

Attention MOI

Output: Classification (y) of each patient, such as risk stratification or g l Methylation I @ l NV ]

disease subtype. S
# Step1: fusing DNA-omics features g

1 MP « Self_Attention (MP) °

2 Readout” « MLP (MD) z [Gene Expressmn] @ [ read out ]
# Step2: fusing RNA-omics features ; *

3 MR < Self_Attention (Mf) g

4 Readout® « MLP (MR) &
# Step3: fusing DNA and RNA features *

) X < Self_Attention (ReadoutD s Readoutk) MLP and output layer

# Step4: classification
6 y < MLP(x)

@ 1-4: Put DNA and RNA level features into two attention layers
@ 5: Concatenate through an attention layer to weight different features

@ 6: Classification task was realized by the fully connected layer
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Methods: Biological interpretation

To calculate the contribution of features to the model output, two
explaining methods were applied.

e SHapley Additive exPlanations (SHAP)
» explain models building by RF, SVM and XGBoost

o Integrated gradient (IG)
> interpret the MLP and AttentionMOI model
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Supplement?

SHapley Additive exPlanations (SHAP)

@ A method used to interpret model predictions, particularly widely
employed in black-box models and ensemble learning

@ Calculate the average contribution of each feature to the model
output based on shapley value:

oi(f)= ), ‘SMN'M',S'_1)![f(5u{i})—f(s)]
SCN\{i} '

N represents the set of features, and |N| is the number of features.
S is any subset of N that does not include .

f(S) represents the model’s output for a given subset S.

@i(f) is the Shapley value for feature i, representing the average
marginal contribution across all possible subsets.

3Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predictions”. In: Advances in neural
information processing systems 30 (2017).
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Supplyment*

Integrated Gradient (IG)

@ Evaluate the contribution of each input feature on the deep learning
model’s output by integrating over the input features.

do

(F) = (x — %) x L of(z+a x (x—x))
1G(F) = (=) x | ZHEEEE

Where:

f is the model’s output.

X; is the i-th feature value of the input.

/

x; is the j-th feature value at some baseline state.

z is a state along the path, where z; = x/ + o X (x; — x/).
of(z)
Oz;

is the partial derivative of the model output with respect to z;.

4Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep Networks”. In: Proceedings of the 34th
International Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, June 2017, pp. 3319-3328.
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Results: 1.Denoising of transcriptome data using FSD

@ Applied the FSD for GBM survival group prediction using the
transcriptome data from TCGA and CPTAC

» Long Time Survial(LTS)
» Non-Long Time Survival (non-LTS)

@ Compared the performance based on four machine learning models
including MLP, RF, XGBoost and SVM with features selected by
FSD, ANOVA, RFE, LASSO, PCA.
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Results: 1.Denoising of transcriptome data using FSD
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@ When the FSD module is introduced, all models obtain better performance
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Figure B: CPTAC-GBM

regardless of the feature selection method used

@ LASSO-based methods obtained the worst stability, while RFE-based

models obtained better performance and stability
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Results: 1.Denoising of transcriptome data using FSD
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@ Compared the t-SNE visualized GBM gene expressions of two survival
groups with different gene expression inputs. Specifically, genes without

selection, RFE selected genes and FSD+RFE selected genes.

@ Genes selected from the FSD+RFE method achieved the highest
KL-divergence score after t-SNE decomposition, indicating that
FSD+RFE could better differentiate GBM survival groups
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Results: 2.Performance of FSD under different omics data
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Figure: (A/C) Comparison of AUC under RF model using different combinations
of omics in two tasks.

Figure: (B/D) Comparison of AUC under RF model between RFE and FSD +
RFE selected features in two tasks based on RNA+Met+CNYV data.
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Results: 2.Performance of FSD under different omics data
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@ Combined prediction of multi-omics achieved better average AUC
performance than single omic

FSD module further improved the prediction performance under
multi-omics data
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Results: 3.The generalizability of FSD
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@ Comparison of AUC using RFE model and FSD + RFE selected
features in prediction of survival among different TCGA cancer types.
P-value calculated through Mann—Whitney-U test.

» p-value < 0.05: %
> p-value < 0.01: *x
> p-value < 0.001: * % x

@ Among 15 cancer types, 12 cancers using FSD + RFE to select
features improved performance significantly.

High generalization ability



Results: 4.FSD selected feature as potential markers |
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Figure: Feature importance of FSD+RFE / RFE selected features

© Conducted SHAP analysis to evaluate the contributions of features
identified by FSD +RFE and RFE under the RF model

» The estimated feature importances of the top 10 features selected by
RFE differed slightly and they did not contribute much
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Results: 4.FSD selected feature as potential markers Il
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Figure C: FSD+RFE Figure D: RFE

@ Displayed distributions of those features to explore how those top
features varied between classes.
» p-value calculated through Mann—-Whitney-U test.
» All top 5 FSD + RFE selected features significantly differentiate
between classes.
» Among the top 5 RFE selected features, only one feature significantly
different between classes.
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Results: 4.FSD selected feature as potential markers Il

A

© Kaplan-Miere curves and Log-Rank tests were conducted.
> All top 5 features selected by FSD + RFE(Figure A) were significantly
influential to patients’ survival while none of the features selected by
RFE(Figure B) were influential to patients’ survival
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Results: 4.FSD selected feature as potential markers IV

@ 2-year survival ROC estimated by topl0 features(C): FSD + RFE selected
features achieved higher AUC

© Univariate Cox regression analysis(D): 58.3% features selected by RFE +
FSD were significantly associated with patient hazard, while 11.5% for RFE

@ There were clearer patterns of omics data values for REF + FSD selected
features when estimated risk scores of patients increased(E/F)

The above results all indicated that FSD selected features could be
potential prognostic markers
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Results: 5.Attentio

Table 1. Performance of AttentionMOI under multi-omics data

Ol improved model performance |

types

Method Threshold =0.2 Threshold = 0.6

MLP 0.7129(0.6751-0.7506) 0.7711(0.7445-0.7972)
AttentionMOI 0.7934(0.7602-0.8265) 0.7200(0.6886-0.7513)
RF 0.7468(0.6844-0.8092) 0.7698(0.7384-0.8012)
XGBoost 0.7338(0.6802-0.7875) 0.7955(0.7704-0.8206)
SVM 0.7839(0.7398-0.8280) 0.7892(0.7631-0.8154)

@ When FSD threshold became smaller, the number of features became larger

@ when only hundreds of features were selected for the model, traditional
machine learning methods tend to perform better

@ AttentionMOI performed better when feature number is large
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Results: 5.AttentionMOI improved model performance Il

Random forest XGBoost MLP MOGONET Moanna Attention MOI
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@ To further evaluate the performance of AttentionMOI, compared it with ML
algorithms and current DL multi-omics integration algorithms, MOANNA
and MOGONET (under threshold=0.2).

» MOANNA is an Autoencoder-based framework.(2023)

» MOGONET is an GCN-based framework.(2021)
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Results: 5.AttentionMOI improved model performance IlI

Among 15 TCGA cancer types,
AttentionMOI outperformed other
models with higher AUC in 12 cases

weo

Figure: AUCs obtained from different
models under FSD threshold=0.2
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Conclusion
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Conclusion |

The key contributions of this framework

© Addressing the Curse of Dimensionality and noisy features with FSD
module: by selectively choosing biologically relevant features

© Robust Multi-Omics Integration with AttentionMOI: improves the
integration process by weighting the influence of different omics data.
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Conclusion Il

Limitations of this framework

@ Modality missing: If the DNA module or RNA module is missing,
the framework will resemble an MLP model, losing interactions of
omics data.

@ Interpretation of the model: Features from different omics are
interpreted separately, but they may contribute to certain phenotype
together while this model does not take the joint functions into
consideration.
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Conclusion 11l

Future Research Prospects

© Modality missing: stagewise pretraining by single modality data with
masked data modeling or crossmodality representation of multi-omics
data may reduce the dependence of the model on the data

@ Interpretation of the model: as biological functions are realized in
regulatory networks, it's possible to represent the associations among
omics using network to develop more interpretable models for
multi-omics integration
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