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Introduction

Interpretability of predictive models

 Due to the advancement of molecular profiling technologies, discovery of
individual genes, pathways, and complexes that promote cancer have been
enabled.

- However, the relationships between molecular features and their biological
contributions remain uncharacterized.

 Disease progression, Drug resistance, and Lethal outcomes

- In translational cancer genomics, interpretability of predictive models is critical,
« Patient care
- Insights into the underlying biological processes

 Functional investigation and therapeutic targeting



Introduction

Limitations of existed deep learning model

- Trade-offs of accuracy and interpretability: A S o |
eneralised linear models
- Linear regression model: high interpretability, low accuracy > il
. . e . % O K Nearest Neighbours
- Deep learning model: low interpretability, high accuracy ® T
&2 O Support Vector Machines
« Fully connected dense deep learning approach = O xGboost

O Neural Networks

 Overfitting, computationally expensive, and less interpretable

Predictive Performance

Sparse model can(rather than dense model),
« Decrease storage requirements

- Improve computational performance

Tools that enhance the deep learning explainability:

- LIME, DeepLIFT, DeepExplain, SHAP

6
Giovanni Ciatto, Michael Ignaz Schumacher, Andrea Omicini, and Davide Calvaresi. 2020. Agent-Based Explanations in Al: Towards an Abstract Framework.



Introduction

Castration-resistant prostate cancer(CRPC)

« The term CRPC was initially proposed by the Prostate Cancer Working Group 2 in
2008.

 Define the state of prostate cancer in an environment with very low serum

testosterone concentration.

 aserum testosterone concentration maintained below 50 ng/dL or 1.7 nmol/dL.

- The paper classified:

- Castration-resistant metastatic v.s. Primary prostate cancers

Morote J, Aguilar A, Planas J, Trilla E. Definition of Castrate Resistant Prostate Cancer: New Insights. Biomedicines. 2022 Mar 17;10(3):689. doi: 10.3390/biomedicines10030689. PMID: 35327491,
PMCID: PMC8945091.
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Preview of P-NET

 Sparse deep learning architecture
« Encode biological information
» Incorporate explainability algorithms

- Achieve superior predictive performance compared with
established models

 Reveal novel patterns of treatment resistance in prostate cancer
with translational implications
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Materials

Materials

* 1,013 prostate cancers
- Armenia, et al.(2018, Nat Genet)
« CRPC(n =333) and Primary cancer(n = 680)
« Somatic mutation and copy number data
« RNA sequence data for secondary analysis

« External dataset from

- Fraser, et al.(Primary cancer, n = 277)
- Robinson, et al.(CRPC, n = 500)

- Reactome pathway(a set of 3,007 pathway)
« Fabregat, et al.(2018, Nucleic Acids Res)
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Materials

Processing of Somatic mutation and CNV

- The mutations were aggregated on the gene level with focus on non-
synonymous mutations.
- Use prostate cancer whole-exome datasets,
- excluding silent, intron, 3’ untranslated region (UTR), 5' UTR, RNA and long
intergenic non-coding RNA (lincRNA) mutations
- The copy number alterations for each gene were assigned on the basis of the
called segment-level copy number as defined by GISTIC2.0
- emphasizing high gains and deep deletions

« excluding single-copy amplification and deletions

11



Materials

Processing of RNA sequencing data

- For secondary analyses involving RNA data, bulk whole transcriptomes from
the subset of the Armenia et al. cohort.
« n =455 from TCGA, n = 204 from SU2C-PCF consortia
- Adapters were trimmed with cutadapt v2.2
« Reads were aligned using STAR aligner v2.7.2b

« STAR-aligned bam files were passed into RSEM to quantifications

cutadapt

v2.2
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P-NET Design
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Genes Pathways Biological

Methods
| Mutations s = ‘p:oi:esses

s ngr?%{er o \
Architecture — '

| Meth.ylation

G;ne.
expression
* BUi].t USing the Re aCtO me pathway Patient profile —> Biologically-informed architecture —

datasets(Fabregat, et al.)
Constraints on the nodes and edges
27687

- Nodes: Encode biological entity(genes, pathway) I

- Edges: Known relationship between the entities
1387
1066
447
147
==

layer O layer 1 layer 2 layer 3 layer 4 layer 5 layer 6

=
o
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Layers: 5 layers of pathways, 1 layer of genes

About 71,000 weights - Sparse
- Dense model has 270 million weights with the 10°;

103 E
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Genes pathways Biological

| Mutations } @_ _ _ ~p:0~cesses
L ngrsr)%ér @ RN \I
aye rS I Fusion. | @ O| o
| Methylation | 4'
. © &=
expr:::ion ‘4- =
) 1 ].ayer : a Set Of genes Patient profile —> Biologically-informed architecture —

- Each node has three connection with input layer

- mutations, copy number amplification, copy number deletion
« 2 — 6 layers: Hierarchy of pathways and biological processes

- manually curated by Reactome pathway dataset, reflecting the real parent-

child relationships y:output of each layer

M:mask matrix
W:weights matrix
y = f[(M * W)Tx + b] b: bias vector
*: Hadamard product
f:tanh = (e?* — 1)/(e?* + 1)
0:1/(1+ e™*) = outcome layer
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Dense layer ¥ =f(W'x +b)

*

Patterned sparse layer

y= f((M*W)x+b)
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Methods

y = f[(M*W)"x + b]

it




Methods -

Optimization Process '

ecture —> Intel

- Learning rate: 0.001
- Epochs: 50

« Binary cross-entropy loss functions
1
H = ——Xyilog(p(y1)) + (1 — yplog(1 — p(y)

« To reduce loss, Adam optimizer was used.
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Methods

DeeplLIFT

Genes

Pathways

2 SES
- Backpropagation-based :
Interpretation —>»
attribution approach
- Shrikumar, et al.(2017, international conference on machine learning)
. # of citations: 3813 /
 Calculate importance score for each node e
ocal gradient
N
in each layer -
y / (% g % @
Chain Rule f .
% oL
= 0z
0L .
4 5 O gradients
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DeeplLIFT

- /At : Target neuron t with difference of output from reference
(e.g. Primary cancer sample v.s. CRPC sample)

n
E C Az, At = At 1 X1,Z2,..., Ty : some neurons in some intermediate layer

1=1
- CAz, At : Contribution score
Multipliers Chain Rule for multipliers
CazAt Z
Az .
J

* Order of layers: x > y - t(node)

20
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Results

Fig 2. Prediction performance of P-NET
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Compare the performance of P-
NET with six methods

Input data is divided into 80%
training, 10% validation and 10%
testing

The P-NET outperformed at AUC-
ROC, AUPRC
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Results

Fig 2. Prediction performance of P-NET

True Positive Rate
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Fig 2. Prediction performance of P-NET

1.0 1

AUC
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—o— P-NET
—o— Dense

20% -
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*

Number of samples

NS NS

Performance increase

Average AUC over five cross-
validation splits
Sparse model has higher
performance than dense model
- Statistically significant in
Sample sizes up to 500(t-test,
P<0.05)
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Fig 2. Prediction performance of P-NET

External Dataset

Months
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- Adequate predictive performance with unseen samples
- Patients with High P-NET scores misclassified have biochemical

recurremnce
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Fig 3. Inspecting and interpreting P-NET
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Results

Fig 3. Importance

Layer H1
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Fig 3. Activation distribution

SUMO E3 ligases SUMOylate target proteins e — ——
Transcriptional Regulation by TP53

RHO GTPases activate PKNs —

Transcriptional regulation by RUNX2 —

G2/M Transition

PTEN Regulation

Mitotic Prophase

Mitotic Metaphase and Anaphase
Mitotic Prometaphase
Cap-dependent Translation Initiation

Layer H3

 Activation: outcome of a certain node given its inputs

« Observed difference in the node activation between Primary and Metastatic
« Higher node activation in
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Figure 4.

Normalized cell count

677
S 600 -
(7]
5 400 —
B
@
% 200 — 14497 -
E Al mema0s
37m  MDM4 [ ] x
167 mmm AR ® I
208 mm—— TP53 [
200 0
m sgGFP-3 sgMDM4-1
sgGFP-4 B sgMDM4-2
-] ’ °
1 9E
1.0 2 o °I
-
0.5 S I
I o
3 - ¥’
*w
0.0 T T T T
C4-2 LNCaP LNCaP 95 LNCaP Abl

b 15

=
o

o
o
1

2.57

Z-score (CSS + enza)
T

-2.5
-5.01
=10 |
-15
d
= LNCaP -+ DU145 - LAPC-4
-»- LNCaP enzares - PC-3 - C4-2
= LNCaP Abl
125 - LNCaP 95

Cell proliferation
(% of control)

-2 -1 (I) 1l 2
log[RO-5963 (umol I)]

29



Discussion

30



Discussion
Discussion

- P-NET leveraged a biologically informed, rather than arbitrarily overparameterized
architecture for prediction.
« P-NET reduced the number of parameters which led to enhanced interpretability.
- The sparse architecture in P-NET has better predictive performance when compared to
other machine learning models.
 Application of P-NET to a molecular cohort of patients with prostate cancer
demonstrated,
- model performance that may enable prediction of clinically aggressive disease in
populations of patients with primary prostate cancer
« convergent biological processes that contribute to a metastatic prostate cancer that
harbor novel therapeutic strategies in molecularly stratified populations.

31



Discussion
Conclusion

- P-NET, a deep neural network informed by biology, successfully distinguished between
primary and advanced prostate cancers.

- It offered new ideas about how prostate cancer spreads and useful insights for treating
different patient groups.

« This approach combines cancer biology with machine learning, creating models that
predict and help in understanding cancer, potentially useful in various cancer research

areas.

32
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Appendix

DeeplLIF]

Z Caz, At = Z Az;maz, A+ (By definition of ma,. A¢t)

= Z Azx; Z MAz; Ay;MAy; At (B the chain rule)
J

Caa,
_ Z Ay =T my, ac (By definition of mag, ay,)

—E E CAa: i Ay; M Ay, At

= Z Z Caz; Ay;MAy, At (Flipping the order of summation)
i

= Z Ay;m Ay; At (By summation-to-delta of CAaq, Ay;)

= Z A AyJAt (By definition of MAy, At)

= Z Cay,;at = At (By summation-to-delta of Cay, at)

34



DeeplLIF]

Separating Positive and Negative Contributions
Ay = AyT + Ay~
Cayat = Caytar + Cay—at

The rescale rule . Ay N
Ay = A—a:Ax = Cag+ay+
Ay~ = i—zA:c_ = Caz—Ay-

MAz+tAyt = MAz—Ay— = MAzAy =

35



Appendix

DeeplLIFT

h, = max(0, i,)
Ahl m Ah2 1
ma; = — = Dy o~
Anah = 7 e 2 4
ref=0 H E ref=0
Ai, =1 Bi, =
MAL Ay = MALAWMAMW Ay = 2 MALAYy = MAZAWRTMARAY = 0.5
Cai Ay = mai,aydi, = 2 CA::Ay - ’nAdszAu =1
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Methods

P-NET training and evaluation

- Training
 Input data is divided into 80% training, 10% validation and 10% testing
- For the cross-validation experiments: Five folds cross-validation
 Evaluation
« The change in the ROC-AUC between P-NET and other models is tested
using DeLong test.
« DeLong test: non-parametric approach to compare two AUC values
 For the cross-validation experiments: using a t-test of the means

 For the survival analysis, a nonparametric log-rank test is used
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