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Interpretability of predictive models

• Due to the advancement of molecular profiling technologies, discovery of 
individual genes, pathways, and complexes that promote cancer have been 
enabled.

• However, the relationships between molecular features and their biological 
contributions remain uncharacterized.
• Disease progression, Drug resistance, and Lethal outcomes

• In translational cancer genomics, interpretability of predictive models is critical,
• Patient care

• Insights into the underlying biological processes

• Functional investigation and therapeutic targeting
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Limitations of existed deep learning model
• Trade-offs of accuracy and interpretability:

• Linear regression model: high interpretability, low accuracy

• Deep learning model: low interpretability, high accuracy

• Fully connected dense deep learning approach

• Overfitting, computationally expensive, and less interpretable

• Sparse model can(rather than dense model),

• Decrease storage requirements

• Improve computational performance

• Tools that enhance the deep learning explainability:

• LIME, DeepLIFT, DeepExplain, SHAP
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Castration-resistant prostate cancer(CRPC)

• The term CRPC was initially proposed by the Prostate Cancer Working Group 2 in 

2008.

• Define the state of prostate cancer in an environment with very low serum 

testosterone concentration.

• a serum testosterone concentration maintained below 50 ng/dL or 1.7 nmol/dL.

• The paper classified:

• Castration-resistant metastatic v.s. Primary prostate cancers
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Preview of P-NET

• Sparse deep learning architecture

• Encode biological information

• Incorporate explainability algorithms

• Achieve superior predictive performance compared with 

established models

• Reveal novel patterns of treatment resistance in prostate cancer 

with translational implications
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Materials and Methods
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Materials

• 1,013 prostate cancers 
• Armenia, et al.(2018, Nat Genet)
• CRPC(n = 333) and Primary cancer(n = 680)

• Somatic mutation and copy number data
• RNA sequence data for secondary analysis

• External dataset from
• Fraser, et al.(Primary cancer, n = 277)
• Robinson, et al.(CRPC, n = 500)

• Reactome pathway(a set of 3,007 pathway)
• Fabregat, et al.(2018, Nucleic Acids Res)
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Processing of Somatic mutation and CNV
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Materials

• The mutations were aggregated on the gene level with focus on non-

synonymous mutations.

• Use prostate cancer whole-exome datasets,

• excluding silent, intron, 3′ untranslated region (UTR), 5′ UTR, RNA and long 

intergenic non-coding RNA (lincRNA) mutations

• The copy number alterations for each gene were assigned on the basis of the 

called segment-level copy number as defined by GISTIC2.0

• emphasizing high gains and deep deletions

• excluding single-copy amplification and deletions



Processing of RNA sequencing data
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• For secondary analyses involving RNA data, bulk whole transcriptomes from 

the subset of the Armenia et al. cohort.

• n = 455 from TCGA, n = 204 from SU2C-PCF consortia

• Adapters were trimmed with cutadapt v2.2

• Reads were aligned using STAR aligner v2.7.2b

• STAR-aligned bam files were passed into RSEM to quantifications

cutadapt
v2.2

STAR 
v2.7.2b RSEM



P-NET Design
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Architecture
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• Built using the Reactome pathway 

datasets(Fabregat, et al.)

• Constraints on the nodes and edges

• Nodes: Encode biological entity(genes, pathway)

• Edges: Known relationship between the entities

• Layers: 5 layers of pathways, 1 layer of genes

• About 71,000 weights → Sparse

• Dense model has 270 million weights with the 

first layer



Layers
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• 1 layer: a set of genes

• Each node has three connection with input layer

• mutations, copy number amplification, copy number deletion

• 2 – 6 layers: Hierarchy of pathways and biological processes

• manually curated by Reactome pathway dataset, reflecting the real parent-

child relationships

𝑦 = 𝑓[ 𝑀 ∗𝑊 !𝑥 + 𝑏]

𝑦: 𝑜𝑢𝑡𝑝𝑢𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑙𝑎𝑦𝑒𝑟
𝑀:𝑚𝑎𝑠𝑘 𝑚𝑎𝑡𝑟𝑖𝑥
𝑊:𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥
𝑏: 𝑏𝑖𝑎𝑠 𝑣𝑒𝑐𝑡𝑜𝑟

∗: 𝐻𝑎𝑑𝑎𝑚𝑎𝑟𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
𝑓: tanh = (𝑒!" − 1)/(𝑒!" + 1)
𝜎: 1/(1 + 𝑒#") → outcome layer



16

Methods

𝑦 = 𝑓[ 𝑀 ∗𝑊 !𝑥 + 𝑏]
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𝑦 = 𝑓[ 𝑀 ∗𝑊 !𝑥 + 𝑏]



Optimization Process
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• Learning rate: 0.001

• Epochs: 50

• Binary cross-entropy loss functions

• To reduce loss, Adam optimizer was used.

𝐻 = −
1
𝑁
∑y!log p y! + 1 − y! log(1 − p y! )



DeepLIFT
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• Backpropagation-based 

attribution approach

Methods

• Shrikumar, et al.(2017, international conference on machine learning)

• # of citations: 3813

• Calculate importance score for each node 

in each layer

Chain Rule



DeepLIFT
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: Target neuron t with difference of output from reference
(e.g. Primary cancer sample v.s. CRPC sample)

: some neurons in some intermediate layer

: Contribution score

Multipliers Chain Rule for multipliers

* Order of layers: x → y → t(node)



Results

21



Fig 2. Prediction performance of P-NET
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• Compare the performance of P-

NET with six methods

• Input data is divided into 80% 

training, 10% validation and 10% 

testing

• The P-NET outperformed at AUC-

ROC, AUPRC

Results



Fig 2. Prediction performance of P-NET
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• Compare the performance 

between three models

• Fusion: include binary variable 

to indicate whether a sample 

has fusion or not(ETS fusion 

and oncogene fusion)

• Fusion(genes): binary 

variables for each gene

• Not impact the performance

Results



Fig 2. Prediction performance of P-NET
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• Average AUC over five cross-

validation splits

• Sparse model has higher 

performance than dense model

• Statistically significant in 

Sample sizes up to 500(t-test,

p<0.05)

Results



Fig 2. Prediction performance of P-NET
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External Dataset

• Adequate predictive performance with unseen samples

• Patients with High P-NET scores misclassified have biochemical 

recurrence



Fig 3. Inspecting and interpreting P-NET
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Fig 3. Importance score of each entities
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Fig 3. Activation distribution
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• Activation: outcome of a certain node given its inputs

• Observed difference in the node activation between Primary and Metastatic

• Higher node activation in 



Figure 4.
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Discussion
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Discussion

• P-NET leveraged a biologically informed, rather than arbitrarily overparameterized 

architecture for prediction. 

• P-NET reduced the number of parameters which led to enhanced interpretability. 

• The sparse architecture in P-NET has better predictive performance when compared to 

other machine learning models.

• Application of P-NET to a molecular cohort of patients with prostate cancer 

demonstrated,

• model performance that may enable prediction of clinically aggressive disease in 

populations of patients with primary prostate cancer 

• convergent biological processes that contribute to a metastatic prostate cancer that 

harbor novel therapeutic strategies in molecularly stratified populations. 



Conclusion
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Discussion

• P-NET, a deep neural network informed by biology, successfully distinguished between 

primary and advanced prostate cancers.

• It offered new ideas about how prostate cancer spreads and useful insights for treating 

different patient groups.

• This approach combines cancer biology with machine learning, creating models that 

predict and help in understanding cancer, potentially useful in various cancer research 

areas.



Thanks!
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DeepLIFT
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DeepLIFT
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Appendix

• Separating Positive and Negative Contributions

• The rescale rule



DeepLIFT
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P-NET training and evaluation 
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• Training

• Input data is divided into 80% training, 10% validation and 10% testing

• For the cross-validation experiments: Five folds cross-validation

• Evaluation

• The change in the ROC-AUC between P-NET and other models is tested 

using DeLong test.

• DeLong test: non-parametric approach to compare two AUC values

• For the cross-validation experiments: using a t-test of the means

• For the survival analysis, a nonparametric log-rank test is used

Methods


