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Introduction

• The collection of complete set of genomes from all the microbes is referred to as microbiome.

• Several diseases, including obesity, diabetes, Crohn’s disease, bacterial vaginosis, and cancer,

among others are associated with microbiome profile.

• Recently, microbiome studies have been growing rapidly due to next-generation sequencing

(NGS) technologies.

• The abundance count for a microbial taxon is often sparse and overdispersed.

• Methods based on the normality assumption are typically inadequate and often result in invalid

inferences.
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Introduction

• A quasi-likelihood approach is used in this paper to address the overdispersion usually observed

in microbiome data.

• Quasi-likelihood can be used as an alternative to maximum likelihood estimation for generalized

liner models (GLM).

• In this framework, the response variable does not assume any distributional form.

• Only the first two moments (mean and variance), and the relationship between them are needed.     

4



Introduction

• A nonparametric function of the nonlinear associations between mean and variance structure

modeled by penalized splines was considered by Chen et al.(2013).

• Chiou and Muller (1999) proposed a nonparametric quasi-likelihood method, with a nonparametric

link function and a nonparametric variance-mean relationship.

• In this article, a flexible quasi-likelihood (FQL) approach is adapted for microbiome data, motivated

by the aforementioned two methods.

• Performance of FQL is compared with other available methods.

• An R package “fql” is also developed to implement the proposed method.
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Quasi-likelihood

• To construct a likelihood function, it is necessary to know the probability distributions of the random

variables.

• In some situations, the underlying probability distribution is not known.

• Also, in other situations, the assumed distribution may be inadequate.

• Another possibility is that the underlying theoretical model may be too complicated to permit

parameter estimation and statistical inference.
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Quasi-likelihood

• However, we may still have substantial information about the data, such as:

➢ type of response (discrete, continuous, nonnegative, symmetric, skewed, etc.)

➢ whether or not the observations are statistically independent

➢ mean and variance relationship

➢ the possible nature of the relationship between the mean response and one or more

covariates

• In such cases, quasi-likelihood is a method for statistical inference when it is not possible to

construct a likelihood function.
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Quasi-likelihood

• Let 𝒀 = 𝑌1, … , 𝑌𝑛
′ be a vector of independent random variables with mean vector 𝝁 =

𝜇1, … , 𝜇𝑛
′ .

• Let 𝜷 = 𝛽1, … , 𝛽𝑝
′

be a vector of unknown parameters 𝑝 ≤ 𝑛.

• We assume that the parameters of interest, 𝜷, relate to the dependence of 𝝁 on covariates x.

• It is denoted by the notation that 𝑌𝑖 has a mean of 𝜇𝑖(𝛽).

• Also, we assume that 𝑉𝑎𝑟 𝑌𝑖 = 𝜙𝑉 𝜇𝑖 , where 𝑉(. ) is a known function and 𝜙 is a possibly

unknown scale parameter.

• Hence, 𝑉𝑎𝑟 𝒀 = 𝜙𝑉(𝝁), where 𝑉 𝝁 = 𝑑𝑖𝑎𝑔 𝑉 𝜇1 , … , 𝑉(𝜇𝑛) .
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Quasi-likelihood

Construction of quasi-likelihood function:

• Let us define the random variable 𝑈𝑖 =
𝑌𝑖−𝜇𝑖

𝜙𝑉(𝜇𝑖)
.

• 𝑈𝑖 has the following properties like a score function:

𝐸 𝑈𝑖 = 0, 𝑉𝑎𝑟 𝑈𝑖 = 𝐸 𝑈𝑖
2 =

𝐸 𝑌𝑖−𝜇𝑖
2

𝜙𝑉 𝜇𝑖
2 =

1

𝜙𝑉(𝜇𝑖)
, and 

𝐸
𝜕𝑈𝑖

𝜕𝜇𝑖
= −𝑉𝑎𝑟 𝑈𝑖 .  

• The quasi-likelihood for 𝜇𝑖 based on data 𝑦𝑖 is defined as:

𝑄 𝜇𝑖; 𝑦𝑖 = ׬
𝑦𝑖

𝜇𝑖 𝑦𝑖−𝑡

𝜙𝑉(𝑡)
𝑑𝑡.

• So, the quasi-likelihood for the independent observations 𝑌1, … , 𝑌𝑛 is:

Q 𝝁; 𝒚 = σ𝑖=1
𝑛 𝑄 𝜇𝑖; 𝑦𝑖 .
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Quasi-likelihood
Quasi-likelihood estimating equations:

• To estimate 𝛽𝑗,

0 =
𝜕Q 𝝁; 𝒚

𝜕𝛽𝑗

= σ𝑖=1
𝑛 𝜕𝑄 𝜇𝑖;𝑦𝑖

𝜕𝛽𝑗

= σ𝑖=1
𝑛 𝜕𝑄 𝜇𝑖;𝑦𝑖

𝜕𝜇𝑖

𝜕𝜇𝑖

𝜕𝛽𝑗

= σ𝑖=1
𝑛 𝑌𝑖−𝜇𝑖

𝜙𝑉(𝜇𝑖)

𝜕𝜇𝑖

𝜕𝛽𝑗

• In matrix notation,
𝜕𝝁

𝜕𝜷
= 𝑫𝑛×𝑝, where the (i, j) component of D is

𝜕𝜇𝑖

𝜕𝛽𝑗
.

• The estimating equation is then 𝑈 ෡𝜷 = 𝟎,

where 𝑈 𝜷 = 𝑫′𝑉−𝟏 (𝒚−𝝁)

𝜙
, is called the quasi-score function.
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Methods

Model

• Let 𝑌𝑖 be the count in sample i (𝑖 = 1, 2, . . . , 𝑛) for a taxon.

• Let 𝐸 𝑌𝑖 = 𝜇𝑖 , 𝒚 = 𝑌1, … , 𝑌𝑛 , and 𝝁 = 𝜇1, … , 𝜇𝑛 .

• The following model is defined:

log 𝜇𝑖 = 𝑿𝑖
′𝜷 (1)

𝑉𝑎𝑟 𝑌𝑖 = 𝑉(𝜇𝑖),                  (2)       

where 𝑿𝑖 is a vector of p covariates, 𝜷 is the corresponding vector of their regression coefficients,

and 𝑉(⋅) is a function of 𝜇𝑖.
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Methods

Model

• A log link function is considered in model (1).

• The variance is modeled as an unknown function V(⋅) of the mean in (2).

• As a particular case of (2), 𝑉 𝜇𝑖 = 𝜇𝑖 +
𝜇𝑖
2

𝑟
(r is the dispersion parameter) can be considered for

the negative binomial distribution.

• In this article, no additional assumptions about the distribution of the response variable were made

to bring up the model more flexible and widely applicable.
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Methods

Estimation and Inference

• The flexible quasi-likelihood (FQL) function is defined as:

𝑄 𝝁, 𝒚 = σ𝑖=1
𝑛 𝑦𝑖׬

𝜇𝑖 𝑦𝑖−𝑡

𝑉(𝑡)
𝑑𝑡 (3)

• Quasi score equation to estimate the parameter vector 𝜷:

𝑈∗ = σ𝑖=1
𝑛 𝑫𝑖 𝑉

−1 𝜇𝑖 𝑦𝑖 − 𝜇𝑖 = 𝟎,                    (4)

where 𝜇𝑖 = 𝑒𝑿𝑖
′𝜷, and 𝑫𝑖 =

𝑑𝜇𝑖

𝑑𝛽
= 𝜇𝑖𝑿𝑖 is a 𝑝 × 1 vector.
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Methods

Estimation and Inference

• Estimation procedure: 

1. Initialize 𝜷 by fitting a model assuming a constant V(𝜇i) for all subjects. Set 𝜇𝑖 = 𝑒𝑿𝑖
′𝜷.

2. Estimate the unknown variance function 𝑉(𝜇𝑖) by minimizing the penalized least squares

function:

σ𝑖 𝑦𝑖 − ො𝜇𝑖
2 − 𝑉(ො𝜇 𝑖)

2 + 𝐽𝜆 𝑉 ො𝜇𝑖 , (5)

➢ where 𝐽𝜆 𝑉 ො𝜇𝑖 is a penalty function with parameter 𝜆

➢ P-spline with quadratic penalty is used to estimate 𝑉(𝜇𝑖)
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Methods

Estimation and Inference

• Estimation procedure: 

➢ 𝐽𝜆 𝑉 ො𝜇𝑖 = 𝜆σ𝑖𝜶
′𝑺𝑖𝜶, where 𝜶 is the vector of parameters in the P-spline model of 𝑉( ො𝜇 𝑖).

➢ 𝑺𝑖 is a positive semi-definite matrix.

3. Estimate 𝜷 by solving the quasi score Equation (4). The Newton-Raphson method with Fisher

scoring gives the following estimate of 𝜷:

෡𝜷(𝑘+1) = ෡𝜷(𝑘) + σ𝑖=1
𝑛 ෡𝑫𝑖

𝑘 ෡𝑫𝑖
𝑘

′
෡𝑉𝑖

𝑘 −𝟏 −1

σ𝑖=1
𝑛 ෡𝑫𝒊

𝑘
𝑦𝑖 − ො𝜇𝑖

(𝑘) ෡𝑉𝑖
𝑘 −𝟏

, and 

Cov ෡𝜷(𝑘+1) = σ𝑖=1
𝑛 ෡𝑫𝑖

෡𝑫𝑖
′ ෠𝑉𝑖

−1 −1
σ𝑖=1
𝑛 ෡𝑫𝑖

෡𝑫𝑖
′ 𝑦𝑖 − ෝ𝜇𝑖

2 ෠𝑉𝑖
−2 σ𝑖=1

𝑛 ෡𝑫𝑖
෡𝑫𝑖
′ ෠𝑉𝑖

−1 −1
.  
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Simulation

1. Data were generated from the following distributions:

➢ Negative binomial

➢ Poisson

➢ Gamma

➢ Pareto

• The Gamma and Pareto are continuous distributions, these are considered as mis-specified

distributions, and the rounded values are taken as the count outcome.

• For each of the above distributions, 600 datasets were generated with sample size 𝑛 = 400.
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Simulation

• A single covariate 𝑋 is included (𝑋~𝑈(0, 1).

• For all of the 4 distributions, the following model was considered:

log 𝜇 = 𝛽0 + 𝛽1𝑥

• Parameter settings for the type I error rate: 𝛽0 = 1, and 𝛽1 = 0.

• Parameter settings for power: 𝛽0 = 1, and 𝛽1 = 0.2.
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Simulation

Example 1: Negative binomial distribution

• The probability function:

𝑓 𝑦; 𝑟, 𝑝 =
Γ 𝑦+𝑟

Γ 𝑟 𝑦!
𝑝𝑟 1 − 𝑝 𝑦 for 𝑦 = 0, 1, 2, . . .,

where r is the number of successes, k is the number of failures, and p is the probability of success

on each trial.

• Mean 𝜇 =
𝑟(1−𝑝)

𝑝
, Variance 𝜎2 =

𝑟(1−𝑝)

𝑝2
, hence 𝜎2 = 𝜇 +

𝜇2

𝑟
.

• The value of r is fixed at 𝑟 = 2.

• Then Y values are generated with mean 𝜇 such that log 𝜇 = 𝛽0 + 𝛽1𝑥, with 𝛽0 = 1, 𝛽1 = 0, and

𝛽1 = 0.2.
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Simulation

Example 2: Poisson distribution

• Probability function:

𝑓 𝑦; 𝜇 =
𝑒−𝜇

𝜇𝑦𝑦!
for 𝑦 = 0, 1, 2, . . .,

where mean = variance = 𝜇.

• Y values are generated with mean 𝜇, where log 𝜇 = 𝛽0 + 𝛽1𝑥, with 𝛽0 = 1, 𝛽1 = 0, and 𝛽1 =

0.2.
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Simulation

Example 3: Mis-specified (gamma) distribution

• Probability function:

𝑓 𝑦; 𝑎, 𝑠 =
𝑒−𝑠𝑦𝑦𝑎−1

𝑠𝑎Γ(𝑎)
, 𝑦 > 0,

where a and s are the shape, and scale parameters respectively.

• E 𝑌 = 𝑎𝑠, 𝑉𝑎𝑟 𝑌 = 𝑎𝑠2.

• Parameter settings: 𝑎 = 𝜇3/2, and 𝑠 = 𝜇−1/2.

• Therefore, E 𝑌 = 𝜇, and 𝑉𝑎𝑟 𝑌 = 𝜇1/2.

• Then Y values are generated with 𝜇, where log 𝜇 = 𝛽0 + 𝛽1𝑥, with 𝛽0 = 1, 𝛽1 = 0, and 𝛽1 =

0.2.
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Simulation

Example 4: Mis-specified (Pareto) distribution

• Probability function:

𝑓 𝑦; 𝛼, 𝛽 =
𝛼𝛽𝛼

𝑦𝛼+1
, 𝑦 > 𝛽,

where 𝛼 and 𝛽 are the shape, and scale parameters respectively.

• E 𝑌 =
𝛼𝛽

𝛼−1
, for 𝛼 > 1, and 𝑉𝑎𝑟 𝑌 =

𝛼𝛽2

(𝛼−2) 𝛼−1 2 for 𝛼 > 2.

• Parameter settings: 𝛼 = 2.5, and 𝛽 =
3

5
𝜇.

• Therefore, E 𝑌 = 𝜇, and 𝑉𝑎𝑟 𝑌 =
4

5
𝜇2.

• Then Y values are generated with 𝜇, where log 𝜇 = 𝛽0 + 𝛽1𝑥, with 𝛽0 = 1, 𝛽1 = 0, and 𝛽1 = 0.2.
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Simulation

• The following models are fitted to all datasets from the 4 distributions:

➢ Flexible quasi-likelihood (FQL) model

➢Negative binomial GLM

➢ Poisson GLM

• All 3 models give asymptotically unbiased results, and mean squared errors (MSE) from them are

very close.
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Simulation

Simulation Results (data simulated from NB distribution)
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• FQL and NB GLM both show the coverage probabilities close to the nominal level (95%)

• Under-coverage for Poisson GLM.



Simulation

Simulation Results (data simulated from Poisson distribution)
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• All 3 models perform well in terms of coverage probabilities. 



Simulation

Simulation Results (data simulated from mis-specified Gamma distribution)
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• Both the NB and Poisson GLMs overestimate the standard errors, resulting in over-coverage.

• The FQL performs the best with reasonable coverage probabilities.



Simulation

Simulation Results (data simulated from mis-specified Pareto distribution)
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• Both the NB and Poisson GLMs underestimate the standard errors, resulting smaller coverage

probabilities than that of the proposed FQL model.



Simulation

Simulation Results (Type I error)
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• When data are generated from the NB distribution, Poisson GLM cannot control the type I error rate.

• For the data from gamma distribution, FQL has better type I error control, NB and Poisson GLMs are

more conservative.

• For Pareto, the proposed FQL gives the lowest type I error rate.



Simulation

Simulation Results (Power)
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• When data are generated from the gamma, and Pareto distributions, the proposed FQL model shows

the highest power than the other two models.

• That is, when the underlying distribution is mis-specified, the NB and Poisson GLMs models may

produce misleading results.



Simulation

2. Simulation from real data

• A real data based simulation framework for data generation is used.

• The simulation framework captures the complexity of microbiome data by generating random

samples from a large reference dataset and using these reference samples as templates to generate

new samples.

• A real dataset is used as the reference data.

• The performance of the proposed model FQL was compared with NB, Poisson GLMs, and with 

ZicoSeq (zero-inflated compositional sequencing) model. 
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Simulation

2. Simulation from real data

• 400 samples were generated for each simulation with 100 operational taxonomic units (OTUs).

• 20 of the OTUs are differentially expressed.

• The abundance for the differentially expressed OUT is:

𝐶𝑖
′ = 𝐶𝑖𝑒𝑥𝑝 𝛽1𝑋𝑖 + 𝜀𝑖 ,

where 𝑋𝑖~𝑈(0,1), 𝛽1 = 0.2, and 𝐶𝑖 is the random abundance from the reference real data.

• Based on the abundance, the OTUs are grouped as

Top half of the abundance range: Common OTUs

bottom half of the abundance range: Rare OTUs
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Simulation

2. Simulation from real data

• For the preprocessing of the simulation reference dataset, OTUs with prevalence less than 25% are

excluded.

• The classification of OTUs is then:

Prevalence from 100% to 62.5%: Common

prevalence ranging from 62.5% to 25%: Rare
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Simulation

Simulation results (simulation from real data)
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• FQL gives the FDR values which are comparable to that of ZicoSeq (smaller than the NB and Poisson

GLMs).

• FQL has a TPR close to NB GLMs which is much higher than that of ZicoSeq. 



Application

• A study based on real data was conducted for the early events of carcinogenesis by investigating

shifts in the gut microbiota of patients with adenomas.

• The data contained fecal microbiota information of 800 patients.

• Patients with adenomas (𝑛 = 266) and without (𝑛 = 534).

• Total number of OTUs (genus level): 178.

• To consider different zero-inflation status, the taxa with prevalence less than 15% (76 OTUs left),

and 25% (63 OTUs left) were excluded.

• The objective is to study the effect of adenomas on the abundance of these OTUs.
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Application

• Four models were applied to these real data:

➢ The proposed FQL model

➢ NB GLM

➢ Poisson GLM

➢ ZicoSeq model

• Covariates used in the models: gender, ever smoking, having polyps or not, and sequencing batch
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Application

• ZicoSeq did not identify any differentially abundance

taxa.

• Poisson GLM gives the largest number of significant

OTUs under all scenarios (consistent with simulation

results: inflated type I error rate).

• FQL identified more OTUs than the NB GLM. Which

justified the simulation results (more powerful and

identified more OTUs when the underlying distribution is

mis-specified).

• The results are robust under different zero-inflation levels

and significance levels.
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Application
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Real data analysis: Results



Discussion

• The FQL model does not need the specification of the distribution function, hence it is more robust

to model mis-specification.

• Simulation, and real studies show that FQL has better performance than the competing models.

• The proposed model does not specifically address zero inflation, which leads to less satisfactory 

performance for rare taxa in the simulation study.

• If the percentage of zeros is very high, then a one-part model should be avoided.

• The model can be extended:

➢ using other link functions (e.g., logit)

➢ adding random effects to the model for clustered/longitudinal data

• To increase the efficiency, the phylogenetic or taxonomic tree structure among different taxa can

be incorporated. 37
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