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Introduction

* The collection of complete set of genomes from all the microbes is referred to as microbiome.

» Several diseases, including obesity, diabetes, Crohn’s disease, bacterial vaginosis, and cancer,

among others are associated with microbiome profile.

» Recently, microbiome studies have been growing rapidly due to next-generation sequencing

(NGS) technologies.
» The abundance count for a microbial taxon is often sparse and overdispersed.

» Methods based on the normality assumption are typically inadequate and often result in invalid

inferences.



Introduction

A quasi-likelihood approach is used in this paper to address the overdispersion usually observed
In microbiome data.

 Quasi-likelihood can be used as an alternative to maximum likelihood estimation for generalized
liner models (GLM).

* In this framework, the response variable does not assume any distributional form.

 Only the first two moments (mean and variance), and the relationship between them are needed.



Introduction

« A nonparametric function of the nonlinear associations between mean and variance structure

modeled by penalized splines was considered by Chen et al.(2013).

Chiou and Muller (1999) proposed a nonparametric quasi-likelihood method, with a nonparametric

link function and a nonparametric variance-mean relationship.

In this article, a flexible quasi-likelihood (FQL) approach is adapted for microbiome data, motivated

by the aforementioned two methods.

Performance of FQL Is compared with other available methods.

An R package “fqgl” is also developed to implement the proposed method.



Quasi-likelihood

 To construct a likelihood function, it is necessary to know the probability distributions of the random

variables.
* In some situations, the underlying probability distribution is not known.
« Also, in other situations, the assumed distribution may be inadequate.

« Another possibility is that the underlying theoretical model may be too complicated to permit

parameter estimation and statistical inference.



Quasi-likelihood

« However, we may still have substantial information about the data, such as:
» type of response (discrete, continuous, nonnegative, symmetric, skewed, etc.)
» Whether or not the observations are statistically independent
» mean and variance relationship

» the possible nature of the relationship between the mean response and one or more

covariates

* In such cases, quasi-likelihood is a method for statistical inference when it is not possible to

construct a likelihood function.



Quasi-likelihood

e Let Y = (Y,...,Y,)" Dbe a vector of independent random variables with mean vector u =

(.ulr uu'n), .

Let B = (B4, ...,ﬁp)' be a vector of unknown parameters p < n.

We assume that the parameters of interest, B, relate to the dependence of u on covariates X.

It is denoted by the notation that Y; has a mean of u; (8).

Also, we assume that Var(Y;) = ¢V (u;), where V(.) is a known function and ¢ is a possibly

unknown scale parameter.

Hence, Var(Y) = ¢V (u), where V() = diag{V(uy), ..., V(uy)}.



Quasi-likelihood

Construction of quasi-likelihood function:

Yi—Hli
PV (ui)

 U; has the following properties like a score function:

* Let us define the random variable U; =

E[(Yi-u)?]

SVEE — pviay 2Nd

E(U;) = 0, Var(U;) = E(U2) =

E (Z—Zi) = —Var(U;).

i

« The quasi-likelihood for u; based on data y; is defined as:

co N — [(HiYi—t
Q(:uii yl) — Vi ¢V (t) dt.

S0, the quasi-likelihood for the independent observations Y, ..., Y;, Is:
Qs y) = Xiz1 Quis yi).




Quasi-likelihood

Quasi-likelihood estimating equations:

* To estimate f3;,

0 — 0Q(1; y)
B;

—yn 90y
_Zl=1 aﬂ]

—yn aQ(Mi;yi)(aui)
=1an \aB;

_yn Yi“u (aﬂi)
=1 v (u;) \9B;

 In matrix notation, Z—Z = Dy, Where the (i, j) component of D is

oy
6,8]-'

» The estimating equation is then U(B) = 0,

where U(B) =D'V1 (y%f‘) , 1s called the quasi-score function.
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Model

* LetY; bethe countinsamplei (i =1,2,...,n) for a taxon.

* LetE(Y) =p,y =Yy, ..., V), and g = (uq, ..., thp).

* The following model is defined:
log(u;) = X;PB (1)
Var(Y;) =V (w), (2)

where X; Is a vector of p covariates, B is the corresponding vector of their regression coefficients,

and V(-) i1s a function of ;.
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Model
* Alog link function is considered in model (1).

* The variance is modeled as an unknown function V(:) of the mean in (2).

2
* As a particular case of (2), V(u;) = u; + ”7‘ (r i1s the dispersion parameter) can be considered for

the negative binomial distribution.

* In this article, no additional assumptions about the distribution of the response variable were made

to bring up the model more flexible and widely applicable.
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Estimation and Inference

 The flexible quasi-likelihood (FQL) function is defined as:

i yi—t
Qy) = X [, T at 3)

* Quasi score equation to estimate the parameter vector f:
U* =3 DV () (v — ) = 0, (4)

where y; = eXif and D; = C;—‘[': = 1;X; isap x 1 vector.
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Estimation and Inference
 Estimation procedure:
1. Initialize B by fitting a model assuming a constant V(u;) for all subjects. Set u; = eXiB.

2. Estimate the unknown variance function V(u;) by minimizing the penalized least squares

function:
Yili —8)* = v(@)* + L (v@a)), (5)
> where J;(V(@;)) is a penalty function with parameter 2

» P-spline with quadratic penalty Is used to estimate V (u;)
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Estimation and Inference

 Estimation procedure:

> ]A(V(ﬁi)) = 1),;a'S;a, where a is the vector of parameters in the P-spline model of V(i ;).

> §; IS a positive semi-definite matrix.

3. Estimate B by solving the quasi score Equation (4). The Newton-Raphson method with Fisher
scoring gives the following estimate of S:

BV = B 4 [zzzl b (D) (Vi”‘))_l]_l [z&m%’” (v = 1) (Vi("))_ll, and

Cov(B¥+V) = [XL, ﬁiﬁi‘?i_l]_l[z?n D:D;(y; - @)ZVi_Z][Z?ﬂDiﬁivi_l]_l-
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1. Data were generated from the following distributions:
> Negative binomial
> Poisson
> Gamma
> Pareto

« The Gamma and Pareto are continuous distributions, these are considered as mis-specified

distributions, and the rounded values are taken as the count outcome.

 For each of the above distributions, 600 datasets were generated with sample size n = 400.
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« Asingle covariate X is included (X~U (0, 1).

 For all of the 4 distributions, the following model was considered:
log(u) = Bo + P1x

« Parameter settings for the type I error rate: 5, = 1,and (; = 0.

« Parameter settings for power: 5, = 1, and 8; = 0.2.
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Example 1: Negative binomial distribution

 The probability function:

. —_ F(y+r) s y
firp) =105, p (1 —p)? fory =0,1,2,.

where r Is the number of successes, k is the number of failures, and p is the probability of success

on each trial.

— 2
* Mean () = — 1) Variance (62) = (;ZP), hence 02 = u + ”7

* The value of ris fixed at r = 2.

« Then Y values are generated with mean u such that log(u) = B, + S1x, with 8, = 1, f; = 0, and

ﬁl — 02
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Example 2: Poisson distribution

* Probability function:

e_”

5y fory=0,1,2,. .

flru) =

where mean = variance = p.

* Y values are generated with mean u, where log(u) = By + B1x, with B, =1, f; =0, and p; =
0.2.
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Example 3: Mis-specified (gamma) distribution
 Probability function:

e—syya—l

frias) = war@ YV

where a and s are the shape, and scale parameters respectively.

E(Y) =as, Var(Y) = as?.

Parameter settings: a = p3/?, and s = p~1/2,

Therefore, E (Y) = u, and Var(Y) = u'/?,

Then Y values are generated with u, where log(u) = By + B1x, with B, =1, f; =0, and B, =
0.2.

20



Example 4: Mis-specified (Pareto) distribution

* Probability function:

e V> P

f,apB) =

where a and [ are the shape, and scale parameters respectively.

ap aB?
- 1! ’ - _ _1\2 .
E(Y) = — fora > 1,and Var(Y) = D@D fora > 2

Parameter settings: a« = 2.5, and § = %M-

Therefore, E (Y) = u, and Var(Y) = guz.

Then Y values are generated with u, where log(u) = By + B1x, with 8, =1, f; = 0,and f; = 0.2.
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 The following models are fitted to all datasets from the 4 distributions:
> Flexible quasi-likelihood (FQL) model
> Negative binomial GLM
> Poisson GLM

 All 3 models give asymptotically unbiased results, and mean squared errors (MSE) from them are

very close.
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Simulation Results (data simulated from NB distribution)

TABLE 1A Comparison of different methods for data simulated from NB distribution with V(p) = u + ”—; fo=1land p, =0.2

B=1 B =02
Fitting model  Bias MSE SD SE CPY% Bias MSE SD SE CP%
NB GLM 0.00484  0.00718 0.085 0.083 94.8 0.00296 0.02049 0.143 0.141 95.5
Poisson GLM 0.00501 0.00722  0.085 0.059 81.3 0.00329 0.02061 0.144  0.100 82.0
Our FQL 0.00848 0.00841 0.091 0.085 93.7 0.00530  0.02301 0.152 0.143 94.5

TABLE 1B Comparison of different methods for data simulated from NB distribution with V(u) = p + “? fo=land f =0

B=1 B=0
Fitting model Bias MSE SD SE CP% Bias MSE SD SE CP%
NB GLM 0.00391 0.00750 0.087 0.086 94.5 0.00173 0.02163 0.147 0.149 095.3
Poisson GLM 0.00391 0.00751 0.087 0.061 83.7 0.00173 0.02165 0.147 0.105 85.0
Our FQL 0.00613 0.00784 0.088 0.086 03.5 0.00132 0.02248 0.149 0.149 05.5

 FQL and NB GLM both show the coverage probabilities close to the nominal level (95%)

» Under-coverage for Poisson GLM.
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Simulation Results (data simulated from Poisson distribution)

TABLE 2A Comparison of different methods for data simulated from Poisson distribution with V(u) = u: fp = 1 and g = 0.2

Bo=1 B =0.2
Fitting model Bias MSE SD SE CP% Bias MSE SD SE CP%
NB GLM 0.00488 0.00355 0.060 0.060 94.0 0.00164 0.00984 0.099 0.101 94.7
Poisson GLM 0.00478 0.00355 0.060 0.059 94.0 0.00166 0.00983 0.099 0.100 94.7
Our FQL 0.00497 0.00378 0.062 0.061 93.2 0.00291 0.01044 0.102 0.103 94.3

TABLE 2B Comparison of different methods for data simulated from Poisson distribution with V(u) = u: fy = 1 and g, =0

Po=1 =0
Fitting model Bias MSE SD SE CP% Bias MSE SD SE CP%
NB GLM 0.00055 0.00372 0.061 0.062 95.2 0.00118 0.01075 0.104 0.107 95.7
Poisson GLM 0.00055 0.00372 0.061 0.061 95.2 0.00117 0.01074 0.104 0.107 95.2
Our FQL 0.00092 0.00393 0.063 0.061 94.2 0.00152 0.01137 0.107 0.114 94.8

« All 3 models perform well in terms of coverage probabilities.
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Simulation Results (data simulated from mis-specified Gamma distribution)

TABLE 3A Comparison of different methods for data simulated from the mis-specified Gamma distribution with V(u) = ,u%: fo=1

and g = 0.2
Bo=1 B =0.2
Fitting model Bias MSE SD SE CP% Bias MSE SD SE CP%
NB GLM 0.00162 0.00234 0.048 0.059 99.0 0.00085 0.00656 0.081 0.100 98.0
Poisson GLM 0.00162 0.00234 0.048 0.059 99.0 0.00085 0.00656 0.081 0.100 98.0
Our FQL 0.00436 0.00283 0.053 0.050 93.3 0.00397 0.00734 0.085 0.082 93.3

TABLE 3B Comparison of different methods for data simulated from the mis-specified Gamma distribution with V(u) = Ju%: fo=1

and g; =0
Po=1 Pp=0
Fitting model Bias MSE SD SE CP% Bias MSE SD SE CP%
NB GLM 0.00043 0.00227 0.048 0.061 98.8 0.00091 0.00680 0.083 0.105 98.7
Poisson GLM 0.00043 0.00227 0.048 0.061 98.8 0.00091 0.00680 0.083 0.105 98.7
Our FQL 0.00063 0.00235 0.049 0.048 95.2 0.00164 0.00680 0.085 0.084 95.2

« Both the NB and Poisson GLMSs overestimate the standard errors, resulting in over-coverage.

« The FQL performs the best with reasonable coverage probabilities.
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Simulation Results (data simulated from mis-specified Pareto distribution)

TABLE 4A Comparison of different methods for data simulated from the mis-specified Pareto distribution with V(u) = %,uz: bo=1

and g; = 0.2

Fitting model
NB GLM
Poisson GLM
Our FQL

Bo=1 prL =02

Bias MSE SD SE CP% Bias MSE SD SE CP%
0.01815 0.00653 0.079 0.064 91.5 0.04257 0.02100 0.139 0.109 89.0

0.01821 0.00671 0.080 0.059 87.7 0.04271 0.02161 0.140 0.100 85.3

0.00009 0.00551 0.074 0.070 92.5 0.00867 0.01742 0.132 0.119 92.3

TABLE 4B Comparison of different methods for data simulated from the mis-specified Pareto distribution with V(u) = %;{2: bo=1

and g =0

Fitting model
NB GLM
Poisson GLM
Our FQL

Bo=1 Br=0

Bias MSE SD SE CP% Bias MSE SD SE CP%
0.02290 0.00661 0.078 0.064 91.5 0.00091 0.01850 0.136 0.111 90.8

0.02303 0.00681 0.079 0.060 88.7 0.00094 0.01916 0.138 0.104 89.7

9.481 e-06 0.00542 0.074 0.070 92.2 0.00814 0.01726 0.131 0.119 92.3

» Both the NB and Poisson GLMs underestimate the standard errors, resulting smaller coverage

probabilities than that of the proposed FQL model.
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Simulation Results (Type | error)
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« When data are generated from the NB distribution, Poisson GLM cannot control the type | error rate.

 For the data from gamma distribution, FQL has better type I error control, NB and Poisson GLMSs are
more conservative.

« For Pareto, the proposed FQL gives the lowest type | error rate.
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Simulation Results (Power)
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* When data are generated from the gamma, and Pareto distributions, the proposed FQL model shows
the highest power than the other two models.
« That is, when the underlying distribution is mis-specified, the NB and Poisson GLMs models may

produce misleading results. 28



2. Simulation from real data

A real data based simulation framework for data generation is used.

The simulation framework captures the complexity of microbiome data by generating random
samples from a large reference dataset and using these reference samples as templates to generate

new samples.

A real dataset 1s used as the reference data.

The performance of the proposed model FQL was compared with NB, Poisson GLMs, and with

ZicoSeq (zero-inflated compositional sequencing) model.
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2. Simulation from real data

400 samples were generated for each simulation with 100 operational taxonomic units (OTUS).

20 of the OTUs are differentially expressed.

The abundance for the differentially expressed OUT is:
C; = Ciexp(B1X; + &),

where X;~U(0,1), f; = 0.2, and C; is the random abundance from the reference real data.

Based on the abundance, the OTUs are grouped as
Top half of the abundance range: Common OTUs
bottom half of the abundance range: Rare OTUSs
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2. Simulation from real data

 For the preprocessing of the simulation reference dataset, OTUs with prevalence less than 25% are

excluded.
* The classification of OTUs is then:
Prevalence from 100% to 62.5%: Common

prevalence ranging from 62.5% to 25%: Rare

31



Simulation results (simulation from real data)

TABLE 5 Comparison of different methods with semi-parametric real data-based simulation

Abundance groups NB GLM Poisson GLM ZicoSeq FQL
TPR (a = 0.05) Overall 0.4440 0.9885 0.2135 0.3840
Common 0.5365 0.9914 0.2741 0.4641
Rare 0.1524 0.9782 0.0152 0.1288
FDR (a = 0.05) Overall 0.2886 0.7781 0.0593 0.1204
Common 0.2103 0.7784 0.0567 0.0775
Rare 0.6438 0.7878 0.0300 0.3150
TPR (a = 0.01) Overall 0.3090 0.9820 0.1475 0.2415
Common 0.3731 0.9878 0.1923 0.2936
Rare 0.1094 0.9663 0.0000 0.0603
FDR (a = 0.01) Overall 0.2565 0.7736 0.0138 0.0680
Common 0.1308 0.7697 0.0138 0.0242
Rare 0.6633 0.7842 0.0000 0.2083

* FQL gives the FDR values which are comparable to that of ZicoSeq (smaller than the NB and Poisson
GLMs).
 FQL has a TPR close to NB GLMs which is much higher than that of ZicoSeq.
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Application

Real data analysis

« A study based on real data was conducted for the early events of carcinogenesis by investigating

shifts in the gut microbiota of patients with adenomas.
« The data contained fecal microbiota information of 800 patients.
« Patients with adenomas (n = 266) and without (n = 534).
 Total number of OTUs (genus level): 178.

» To consider different zero-inflation status, the taxa with prevalence less than 15% (76 OTUs left),
and 25% (63 OTUs left) were excluded.

« The objective is to study the effect of adenomas on the abundance of these OTUs.
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Application

Real data analysis
« Four models were applied to these real data:
> The proposed FQL model
> NB GLM
» Poisson GLM
> ZicoSeq model

« Covariates used in the models: gender, ever smoking, having polyps or not, and sequencing batch

34



Application

Real data analysis: Results

FIGURE 2
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The Venn diagrams for different prevalence cutoffs (15% vs

25%) and different significance (0.05 vs 0.01)

« ZicoSeq did not identify any differentially abundance

taxa.

« Poisson GLM gives the largest number of significant
OTUs under all scenarios (consistent with simulation

results: inflated type | error rate).

 FQL identified more OTUs than the NB GLM. Which
justified the simulation results (more powerful and
identified more OTUs when the underlying distribution is

mis-specified).

* The results are robust under different zero-inflation levels

and significance levels.
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Application

Real data analysis: Results

TABLE 6 The 8significant OTUs from our FQL model for data with prevalence of 25% and significance level of 0.05 after FDR

correction
Phylum
Chrysiogenetes
Firmicutes
Bacteria
Bacteria
Firmicutes
Firmicutes
Firmicutes

Proteobacteria

Class

Chrysiogenetes
Clostridia
Bacteroidetes
Firmicutes
Clostridia
Clostridia
Erysipelotrichi

Gammaproteobacteria

Order
Chrysiogenales
Clostridiales
Bacteroidia
Clostridia
Clostridiales
Clostridiales
Erysipelotrichales

Enterobacteriales

Family
Chrysiogenaceae
Veillonellaceae
Bacteroidales
Clostridiales
Christensenellaceae
Lachnospiraceae
Erysipelotrichaceae

Enterobacteriaceae

Genus
Desulfurispirillum
Acidaminococcus
Prevotellaceae
Mogibacteriaceae
Christensenella
Pseudobutyrivibrio
cc_115

Erwinia

P_value
1.47 %1073
1.61x10~*
<1x1078
6.14x107*
1.12x 1073
7.63x107°
<1x1078
1.35x 10~
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Discussion

« The FQL model does not need the specification of the distribution function, hence it iIs more robust

to model mis-specification.

 Simulation, and real studies show that FQL has better performance than the competing models.

» The proposed model does not specifically address zero inflation, which leads to less satisfactory
performance for rare taxa in the simulation study:.

« If the percentage of zeros Is very high, then a one-part model should be avoided.
« The model can be extended:

> using other link functions (e.g., logit)

> adding random effects to the model for clustered/longitudinal data

 To increase the efficiency, the phylogenetic or taxonomic tree structure among different taxa can

be incorporated. 37
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