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● The advancement of single-cell sequencing techniques assists researchers 
to simultaneously obtain multiple omics data.

○ Single- cell RNA-sequencing (scRNA-seq) quantifies the mRNA 
abundance of genes in each cell. 

○ Single-cell Assay for Transposase- Accessible Chromatin using 
sequencing (scATAC) characterizes the openness of cis-regulatory 
elements in nearby genes

● The joint analysis of scRNA-seq and scATAC data can strength key 
genetic information of different omics, and decipher gene regulatory 
relationships related with cellular heterogeneity

1.1. Single-Cell Multi-omics  
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1.2. Challenges in Single-Cell Multi-Omics Integration
● Inherent characteristics of single cell data bring great computational and 

analytical challenges. 

○ High Sparsity: Only a small fraction of molecular features are detected in 
each cell. This may be due to technical limitations, biological variability, and 
not all genes are active or expressed in every cell.

○ Noise: Random variations or errors introduced during experimental and 
measurement processes. This may be due to sample preparation, amplification 
of genetic material, and actual measurement of omics data.

○ Dimensionality Mismatch: Different omics data types have varying 
dimensionalities, representing information differently. 
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1.3. Approaches to Overcome Integration 
Challenges

● Some methods build on non-negative matrix factorization or principal 
component analysis(PCA) to integrate single-cell multi-omics data.

➢ Limitation: these methods ignore omics-specific information and 
disregard non-linear geometries of multi- omics data. 

● Manifold alignment methods aim to align embedded low-dimensional 
manifolds of different omics data and characterize intrinsic cellular structures.

➢ Limitation:Although these alignment-based methods can capture 
non-linear geometries across multi-omics data, they suffer a high time 
complexity. 
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1.4. Deep Learning Approaches for Single-Cell 
Multi-omics Integration 

● Current Deep Learning-Based Approaches

○ Single-cell Multimodal variational AutoEncoder (scMVAE)

○ Deep Cross-omics Cycle Attention (DCCA)

● Limitations: 

○ These methods focus on a shared representation, but disregard the omics 
individuality, and cannot integrate different levels of biological features.

○ Available single-cell clustering methods only focus on the cell type 
clustering, which cannot mine the alternative clustering to comprehensively 
analyze cells.
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1.5.  scMCs, a Solution for Single-Cell Multi-omics 
Data Integration

● The proposed method, scMCs, aims to process individuality and 
commonality from heterogeneous omics, constructing a comprehensive 
representation for single-cell multi-omics data fusion, clustering, and 
multiple clustering. 

● It uses omics-independent deep autoencoders, attention mechanism, 
omics-label discriminator, contrastive learning strategy, multi-head attention 
mechanism, and Kullback–Leibler divergence-based clustering loss to 
generate multiple salient subspaces and generate high-quality clusterings in 
an end-to-end framework.



MATERIALS AND METHODS 
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2.1. Framework Overview

● The Figure shows the overall 
framework of the proposed method. 

● Part (a) aims at multi-omics data 
fusion and cell clustering 

● Part (b) targets to explore multiple 
clusterings with quality and diversity 
embedded in multi-omics data
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2.2. Multi-omics Data Encoder for Individuality

● Let X ∈ ℝN x DX and Y ∈ ℝN x DY be the normalized scRNA-seq data and scATAC 
data, where N is the number of samples, DX and DY are the number of features. 

● scMCs firstly employs two independent encoders fEX and fEY  to learn respective 
d-dimensional feature representations {ZX , ZY} ∈ ℝN x d : 

Zx = fEX(X),  Zy = fEY(Y),  where:  

d:  is the dimension of embedding space; 

ZX: is the latent low- dimensional representation of cells and genes in scRNA-seq data,

ZY:  encodes the latent patterns between cells and peaks in scATAC data.
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2.2. Multi-omics Data Encoder for Individuality

● To extract the individuality and explore the complementary information among 
different omics, this approach incorporates the attention mechanism and 
omics-label discriminator into the encoder module. 

● Concretely, scMCs defines two normalized attention score matrices as:

where:  

- The elements in AX and AY quantify the similarity of a pair of cells for different omics.

- Softmax(・) normalizes the weight to [0, 1] to avoid modeling negative correlations. 
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2.2. Multi-omics Data Encoder for Individuality

● With the normalized attention scores, this study  reorganizes the low- 
dimensional representations by considering the similarity among cells:

● The attention mechanism plays important roles in the encoding module. 

○ On one hand, it measures the importance of biological signals in the intrinsic 
feature spaces of different omics, and extracts omics individuality.

○ On the other hand, it explores the similarity between cells and enables to 
explore the representation relationship between cells and features from a 
global perspective.
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2.2. Multi-omics Data Encoder for Individuality

● In supervised learning tasks, labels can indicate the class or identity of the samples. 

● Given that, omics labels can be used as the supervised signals to extract individual 
features of each omics, here the method explicitly defines the omics labels, i.e. cells 
from the same omics are labeled as one type. 

● Next, an omics-label discriminator  is designed to further enhance the quality of 
individuality in ZgX and ZgY. 

● The discriminator loss is defined as:

CE: the cross-entropy loss ,   fdis(): the omics- label predictor.

P ∈ {0,1}2N x K is the true omics- label matrix, where K is the number of omics;
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2.3. Cross-omics contrastive learning for 
commonality

● To extract the compact commonality features between different omics, the authors 
introduce the cross-omics contrastive learning strategy to extract shared 
knowledge from scRNA-seq and scATAC data for fusion.

● The core theory of contrastive learning is to maximize the consistency by maximizing 
the mutual information between different views.

● In this way, one can obtain more informative embedded features by maximizing the 
information entropy, and avoid the simple solution of assigning all samples to the same 
cluster. 
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2.4. Multi-omics Data Fusion and Imputation for 
Clustering

● scMCs can learn two latent representations ZgX and ZgY to encode omics 
individuality, and a latent representation ZXY to encode commonality, which are key 
factors for clustering and imputing single-cell multi-omics data.

● Here, the authors performed an element- wise sum operation with scale parameters 
λx and λy to aggregate them, and generate a more discriminative co-embedding 
representation ZI :
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2.4. Multi-omics Data Fusion and Imputation for 
Clustering

● A Zero Inflated Negative Binomial(ZINB) model-based decoder network is proposed to 
explore the global probabilistic structure of scRNA-seq data, incorporating the mean 
and dispersion parameters of the negative binomial distribution.

● Mathematically, ZINB is defined with the mean (μx) and dispersion (θ) parameters of 
the negative binomial distribution and a coefficient (π) that describes the probability of 
dropout events:

where : 
x is a vector from the original scRNA-seq data.
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2.4. Multi-omics Data Fusion and Imputation for 
Clustering

● the ZINB-based decoder estimates the parameters{π,μX,θ} based on ZI through three different 
fully connected layers as follows:

● where {∏;     ; Θ} is the matrix form of {π,μ,θ};  fDX is a decoder with fully connected layer; 
Wπ, Wμx, and Wθ are three learnable parameter matrices.

● The activation function of ∏ is sigmoid () because the dropout probability is between 0 and 1. 

● In addition, since the mean and dispersion parameters are non-negative, the exponential 
function exp() is selected as the activation function for       and Θ.
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2.4. Multi-omics Data Fusion and Imputation for 
Clustering

● Different from the traditional mean squared error loss-based autoencoder, the loss 
function of ZINB-based decoder network is the negative log of the ZINB 
likelihood:
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2.4. Multi-omics Data Fusion and Imputation for 
Clustering

● Considering the extremely sparse and nearly binary nature of scATAC data, a Bernoulli 
distribution (Ber)-based decoder network was used to model scATAC data:

y: vector from the original scATAC data
μy is the mean parameters of Ber. 

● The Bernoulli-based decoder estimates μy based on ZI through a fully connected layer with 

sigmoid() as activation function:

       

● Finally, the Bernoulli-based autoencoder can be optimized by the cross-entropy loss:

       : the matrix form of μy, 
Wμy: the weight parameter matrix. 
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2.4. Multi-omics Data Fusion and Imputation for 
Clustering

● To pursue a more discriminative and informative co-embedding representation that 
incorporates individuality and commonality of multi-omics data,the authors unify the 
objective of imputing the scRNA-seq data and scATAC data, predicting the omics 
labels, and cross-omics contrastive learning loss as follows:

● By optimizing this equation the individual and shared feature representations can be 
learned from multi-omics data, and they can be merged into an informative 
co-embedded representation for clustering and multiple clustering.



23

2.5. Multiple Clusterings Mining Module

● Contemporary single-cell multi-omics analysis methods focus on integrating 
cross-omics shared features to find optimal cell division patterns, neglecting other 
important patterns. 

● Multi-view multiple clustering, unlike traditional multi-view methods, incorporates 
consistent and specific features, generating multiple meaningful and non-redundant 
clusterings. 

● This helps divide cells from different perspectives and explain cell heterogeneity. 

● scMCs introduces another module to more comprehensively mine single-cell 
multi-omics data, utilizing omics individuality and commonality to explore 
alternative clusterings embedded in the multi-omics data.
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2.5. Multiple Clusterings Mining Module

● The module utilizes multi-head attention to generate different salient subspaces, 
ensuring diversity. 

● To enhance the quality and reduce redundancy between clusterings, Hilbert Schmidt 
Independence Criterion (HSIC) is employed. 

● The optimization process involves learning sets of cluster centers in each subspace using 
KL divergence loss and an auxiliary target distribution. 

● The overall objective combines reconstruction loss, redundancy reduction, and 
clustering loss, providing a comprehensive framework to mine single-cell multi-omics 
data effectively.
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3.1. Experimental Setup 
3.1.1. Datasets

● In the experiments, the performance 
of scMCs is evaluated by jointly 
modeling the scRNA-seq data and 
scATAC data. 

● Four preprocessed single-cell 
multi-omics data with paired profiles 
were collected from a previous study 
(Zuo et al. 2021). 
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3.1. Experimental Setup 

3.1.2. Evaluation Protocols 

● K-means is applied for single clustering to cluster cells based on the 
low-dimensional co-embedding representation ZI.

● To evaluate the clustering performance, the current study used Normalized 
Mutual Information(NMI) and Adjusted Rand Index(ARI). 

● To evaluate multiple clustering, NMI and Jaccard Index(JI) were used to 
measure the overlap between different clusterings, and Silhouette coefficient 
and Dunn Index(DI) to evaluate the quality of each clustering. 
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3.1. Experimental Setup 

3.1.3. Comparing Baselines 

This study implements scMCs with the MindSpore deep learning framework and 
compare it against four competitive single-cell multi-omics data fusion methods: 

❏ JSNMF (Ma et al. 2022)

❏ UnionCom  (Cao et al. 2020)

❏ scMVAE(Zuo and Chen 2021) 

❏ DCCA (Zuo et al. 2021) 
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3.2. Cell Clustering and Visualization  

● Each method repeats five times to take the average and variance

● UnionCom is too time-consuming on large datasets, so its results on Mouse skin are 
not reported. 

● scMCs performs well on the four data- sets in terms of NMI and ARI, and the 
clustering results are statistically better than other methods in most cases.
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3.2. Cell Clustering and Visualization  (Continued)

● To  illustrate the quality of ZI, UMAP was applied to visualize cell clustering points of 
scMCs and other baselines on each benchmark dataset. 

● scMCs has the clearest division boundaries and the lowest misclassification rate.

●  These results also explain why scMCs achieves a better clustering performance. 
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3.3. Evaluation of Data Imputation   

● Besides accurate cell clustering, scMCs also realizes data imputation based on ZI 
using two independent deep generative decoder net- works. 

● To evaluate the quality of imputed scRNA-seq data and scATAC data, this study 
visualizes the raw data and the imputed data generated by scMCs,and other deep 
learning methods: scMVAE-PoE, scMVAE-Direct, scMVAE-NN, and DCCA. 

● Specifically, the raw data and imputed data were projected into different 2D 
spaces via UMAP, and cell clusterings were explored. 

●  NMI and ARI were considered to evaluate the clustering given by each method.
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3.3. Evaluation of Data Imputation(Continued)   

● We see the NMI and ARI scores of 
scMCs are significantly higher than 
those of other baselines. 

● The visualization results also 
confirm the cell clustering found by 
scMCs is more separated between 
different clusters and more compact 
within clusters. 

● All these confirm that scMCs can 
generate an informative embedding 
representation ZI, which can be 
used for data imputation.

Figure S5: 
Cell clustering visualization of each method on raw and imputed CellMix scRNA-seq 
data. (a) Raw data; (b) scMVAE-PoE; (c) scMVAE-NN; 
(d) scMVAE-Direct; (e) DCCA; (f) scMCs; (g) NMI values; (h) ARI values.
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3.4. Evaluation of Multiple Clusterings   

● Existing single-cell data clustering methods can only find one clustering pattern of 
cell types. 

● However, with increased single-cell data, there are alternative and meaningful 
clusterings that can uncover new patterns of cells more comprehensively. 

● scMCs can project co-embedding representations into different subspaces and find 
different clusterings. 

● Users can specify the number of clusterings and clusters based on datasets or user 
expectations. 

● In experiments, scMCs project ZI into subspaces, generate two clusterings, and 
measure their overall quality.
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3.4. Evaluation of Multiple Clusterings   

● C1 has a high similarity with the 
ground truth Ct , while the smaller 
NMI and JI values indicate that 
C2 is not similar to Ct. 

● In addition, the high SC and DI 
values suggest that C2 is a 
potential alternative clustering 
with high quality.
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3.5. Ablation Study  

● To study the contribution factors of scMCs, four 
variants are introduced :w/oAtt, w/oDiscriminator, 
w/oCL, and w/oZB, which separately disregard the 
attention layer, omics-label discriminator, contrastive 
learning, and ZINB loss and Bernoulli loss.

● scMCs outperforms its variants by a clear margin, 
which confirms that attention layer, omics-label, 
contrastive learning mechanism, and generative 
decoder indeed contribute to the quality of cell 
clustering.
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● This article Proposes Single-Cell Multi-omics Clustering (scMCs) for 
single-cell multi-omics data integration.

● scMCs extract individual and shared features of multi-omics data and fuse 
them into informative co-embedding representation.

● scMCs can comprehensively mine multi-omics data by projecting the 
co-embedding representation into different subspaces.
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● Experimental results show superior and competitive performance in cell 
clustering and data implementation.

● scMCs find multiple clustering structures with diversity and quality, 
providing insights into diverse cellular roles.

● Future pursuits include combining data fusion and multiple clustering 
mining into a unified method and simplifying scMCs with fewer 
parameters.

38



THANK YOU 
FOR YOUR ATTENTION !

39


