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Introduction

• Biological phenomena can be clarified in the context of multiple level omics system.

• Two main goal of omics integration is:

1. multi level pathway inference
2. detect underlying molecular patterns

• Through analysis and interpretation of such multi-omics data, accurate disease 
risk prediction is possible, contributing to precision medicine.

• Previous common approaches in ML/DL:

- Summarize each omics layer from the dataset as a latent variable 
and then integrates them.

- Calculate similarities between two classes of samples in networks based analysis.
- Dimensionality reduction plays a crucial role.
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Limitation of Dimensional reduction

• PCA (Principal Component Analysis)
- Selects principal components (eigenvectors) in a way that maximizes the variance

of the data, by eigen value decomposition on the covariance matrix

• PLS (Partial Least Squares)
- maximize the variance of the linear combination of X(=t), while simultaneously maximizing 

the covariance between the linear combination of X, observable as in PCA, and Y.

PCA PLS

𝑡 = 𝑋𝑤,𝑤 = weight,

maximize 𝑐𝑜𝑟𝑟 𝑡, 𝑌 𝑉𝑎𝑟(𝑡)
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Limitation of Dimensional reduction

• LRA (Low rank approximation)
- Approximates a given matrix with a lower-rank matrix, capturing the most important underlying 

structure by eigenvalue decomposition on the covariance matrix.

• CCA (Canonical Correlation Analysis)
- Identifies linear combinations of variables in two datasets that maximize their correlation.

• Can simplify the structure of the data and facilitate interpretation.

• However, these kinds of reduction are not designed to maximize the prediction accuracy.

1. Normal distribution for every omics layer may not represent the true effect size distribution.
2. Vast amount of noise can result in an similarity estimation process.

• To address this issues, they proposed two way linear mixed model(TBLMM).
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Background: Kernel function (kernel trick)

• To operate in a high-dimensional data, implicit feature space by computing inner product.
(as a similarity, also called as similarity function K)

𝑘 𝑥, 𝑥′ , ∀𝑥, 𝑥′ ∈ 𝑋, 𝑘: 𝑋 × 𝑋 → ℝ 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑀𝑒𝑟𝑐𝑒𝑟′𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1) symmetry: 𝑘 𝑥, 𝑥′ = 𝑘(𝑥′, 𝑥)

2) positive definiteness:෍

i=1

n

෍

J=1

n

𝑐𝑖𝑐𝑗𝑘 𝑥𝑖 , 𝑥𝑗 ≥ 0 , ∀𝑐𝑖 , 𝑐𝑗 ∈ℝ

3) Infinite dimensional feature mapping: නනg x k x, x′ g x′ 𝑑𝑥𝑑𝑥′ < ∞

𝑎𝑠 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠:

1) positive semi − definiteness: නන𝑔 𝑥 𝑘 𝑥, 𝑥′ 𝑔 𝑥′ 𝑑𝑥𝑑𝑥′ ≥ 0, 𝛼𝑇𝐾𝛼 ≥ 0

2) non − negative: 𝑘 𝑥, 𝑥′ = 𝑐, 𝑐 න𝑔 𝑥 𝑑𝑥න𝑔 𝑥′ 𝑑𝑥′ = 𝑐 න𝑔 𝑥 𝑑𝑥

2
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Background: LMM

• Linear mixed model (LMM) consists of fixed effect
(𝛽) and random effect(𝑢) also known as blocking:

𝑌𝑖𝑗 = (𝛽0+𝑢0𝑗) + 𝛽1 + 𝑢1𝑗 𝑋i + 𝜖𝑖, 𝜖𝑖 ∼ 𝑁 0, 𝜎

(Applied Statistics for Experimental Biology 2018 Jeffrey A. Walker / Lecture: Linear mixed model - Yue Jiang, Duke University)
(A Bayesian linear mixed model for prediction of complex traits, Bioinformatics Yang et al.)

𝑌

𝑋

𝑌𝑖 = 𝛽0 + 𝛽1𝑋i + 𝜖𝑖

𝑌𝑖1 = (𝛽0+𝑢01) + 𝛽1 + 𝑢11 𝑋i + 𝜖𝑖

𝑌𝑖2 = (𝛽0+𝑢02) + 𝛽1 + 𝑢12 𝑋i + 𝜖𝑖

𝑌 = 𝑋𝛽 + 𝑍𝑢 + 𝜖

Fixed effect vector (𝛽) = population mean do not vary.
Random effect vector (𝑢) = parameter can vary depend on

blocks(subject, time point, …).

• For more complex mixed model,

• We can blocking the model by LMM
• Limitations: 

- It simply assumes all genetic variants have the same effect-size distribution 
that can be sensitive to the underlying disease model.

- For genomic data, single nucleotide polymorphisms (SNPs) that come from different 
genetic regions are unlikely to have the same type of effect sizes.
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Background: BLMM

• Bayesian Linear mixed model (BLMM) can accommodate various model assumption,
by specifying different prior distributions on cumulative effect(𝑔𝑚).

• 𝜃0 ∈ [0,1] as the tuning parameter for controlling sparsity indicating whether genetic variant exist.
• Using 𝛾 as a variable selection avoids underestimating the posterior variance.

• While set a multivariate normal prior for each cumulative effect(𝑔𝑚),
𝜎𝑚
2 reflects the effect sizes for predictors that allows for difference across regions(𝑚) as inversed gamma.

• 𝐾𝑚 is the genetic similarity for region, where 𝐺𝑚 is genotype matrix and number of genetic marker 𝑝𝑚 .
• 𝑊𝑚 is the weights of the rare variants, where 𝑀𝐴𝐹𝑖 is minor allele frequency for the 𝑖 th variant (1,.., 𝑝𝑚).
• Because 𝜎𝑚

2 are expected to be small, the hyperparameters(𝑎, 𝑏) are set to be 0.1 for all regions.

(A Bayesian linear mixed model for prediction of complex traits, Bioinformatics Yang et al.)

𝑌 = 𝑋Γ𝛽 + ෍

𝑚=1

𝑀

𝑔𝑚 + 𝜖𝑖, 𝜖𝑖 ∼ 𝑁 0, 𝐼𝜎𝜖
2 , 𝛽 ∼ 𝑁(0, 𝜎𝛽

2), Γ = diag 𝛾 , 𝛾 = 𝛾1, . . 𝛾p
T
, 𝛾𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜃0

𝑔𝑚|𝐾𝑚~𝑁 0,𝐾𝑚𝜎𝑚
2 , 𝑚 = 1,… ,𝑀, 𝜎𝑚

2 ∼ 𝐼𝐺 𝑎, 𝑏 , 𝐾𝑚 = 𝐺𝑚𝑊𝑚𝐺𝑚
𝑇 /𝑝𝑚,

𝑊𝑚 = 𝑑𝑖𝑎𝑔 𝑤1, … , 𝑤𝑝𝑚 , 𝑤𝑖 =
1

𝑀𝐴𝐹𝑖 1−𝑀𝐴𝐹𝑖
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TBLMM: Two step Bayesian LMM

• To model the outcome as a sum of region-wise predictive effect from region 𝑚 ∈ {1,… ,𝑀}:

• 𝐹𝑚 as the joint predictive effect from all omics data,
Decomposed into large effect from a few predictors 𝑋𝑚𝛽𝑚,
small effect from a large number of predictors 𝑂𝑚 as joint predictive effects.
𝑆𝑚 is the set of all effects (marginal effect of genome, interaction between genome and methylome)

𝑤ℎ𝑒𝑟𝑒 𝑋 ∈ ℝ𝑛×𝑝𝑜
𝑚
, 𝑋𝑚 = [𝑋𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑚 , 𝑋𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛
𝑚 , … , 𝑋𝑔𝑒𝑛𝑜𝑚𝑖𝑐𝑠

𝑚 ]

𝑌 = ෍

𝑚=1

𝑀

(𝑋𝑚𝛽𝑚 + 𝑂𝑚) + 𝜖𝑛 = ෍

𝑚=1

𝑀

(𝑋𝑚𝛽𝑚 + ෍

𝑗∈𝑆𝑚

𝑜𝑗
𝑚) + 𝜖𝑛, 𝜖𝑛 ∼ 𝑁 0, 𝐼𝜎𝜖

2 , 𝑜𝑗
𝑚 ∼ 𝑁(0, 𝐾𝑗

𝑚𝜎𝑚𝑗
2 )

𝑌 = ෍

𝑚=1

𝑀

𝐹𝑚 + 𝜖𝑛, 𝜖𝑛∼ 𝑁 0, 𝐼𝜎𝜖
2

𝑌1
⋮
𝑌𝑛

= ෍

𝑚=1

𝑀 𝑋11 ⋯ 𝑋1𝑚
⋮ ⋱ ⋮

𝑋𝑛1 ⋯ 𝑋𝑛𝑚

𝛽1⋯𝛽𝑚 + ෍

𝑚=1

𝑀

෍

𝑗∈𝑆𝑚

𝑜𝑗
𝑚 +

𝜖1
⋮
𝜖𝑛
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TBLMM: C+T prediction method for ΣXmβm

• Previously in BLMM, due to the high computational burden with high-dimensional multi-omics input,
Using a SCT (Stacked Clumping and Thresholding) method to get C+T score. (polygenic score)

• 𝐼𝑁𝐹𝑂 score (𝐼𝑁𝐹𝑂𝑇) is the thresholds on genotype imputation ∈ [0,1],
• 𝑟𝑐

2 is squared correlation for clumping threshold, 𝑤𝑐
2 is clumping window size divided by 𝑟𝑐

2.

• ෡𝛽𝑗 = 𝑝𝑗 are the p-value as the effect size from GWAS with 𝐼𝑁𝐹𝑂 score ≤ 𝐼𝑁𝐹𝑂𝑇 (below the threshold).

• Similarly, Using univariate analysis to estimate effect size of each predictor,
Select a fraction of predictors with the largest effects in each region 𝑚.

• Get estimate effect size ෢𝛽𝑝𝑚 from 𝑛 × 𝑝𝑜
𝑚 dimensional 𝑋𝑚

(by linear regression)

• 5% Largest effect within region 𝑚 selected : 𝑛 × 𝑝𝑜
𝑚 → 𝑛 × 𝑝𝑟

𝑚 (𝑚𝑟 = 0.05𝑚𝑜) as 𝑋𝑚
r

𝑖𝑛 𝑌𝑇𝐵𝐿𝑀𝑀 = ෍

𝑚=1

𝑀

(𝑋𝑚
𝑟 𝛽𝑚

𝑟 + 𝑂𝑚) + 𝜖𝑖

𝑋𝑖
𝑘

𝐼𝑁𝐹𝑂𝑇 , 𝑟𝑐
2, 𝑤𝑐

2, 𝑝𝑇 = ෍

𝑗∈𝑆_𝑐𝑙𝑢𝑚𝑝𝑖𝑛𝑔 𝑘,𝐼𝑁𝐹𝑂𝑇,𝑟𝑐
2,𝑤𝑐

2

𝑝𝑗 <𝑝𝑇

෡𝛽𝑗 ∙ 𝐺𝑖,𝑗
𝑖𝑛 𝑌𝐵𝐿𝑀𝑀 = 𝑋m𝛽𝑚 + ෍

𝑚=1

𝑀

𝑔𝑚 + 𝜖𝑖
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Step 1: Integration for each region

• To model the outcome as a sum of region-wise predictive effect from region 𝑚 = 1,… ,𝑀,
Consider different omics data(𝑇1

𝑚), within layer interaction(𝑇2
𝑚), and between layer interaction(𝑇3

𝑚).

• Consider joint effect(𝑜𝑡
𝑚) of omics data by using random effect term, similar to BLMM,

• Calculate marginal predictive effect from each of them by using linear kernel function.

𝑓𝑟𝑜𝑚 𝑌 = 𝑋𝑚𝛽𝑚 + ෍

𝑗∈𝑆𝑚

𝑜𝑗
𝑚 + 𝜖𝑛, Y = 𝑋𝑚𝛽𝑚 +෍

𝑡=1

𝑇1
𝑚

𝑜𝑡
𝑚 + ෍

𝑡′=1

𝑇2
𝑚

𝑊𝑡′
𝑚 + ෍

𝑡′′=1

𝑇3
𝑚

𝐵𝑡′′
𝑚 + 𝜖𝑛

𝑜𝑡
𝑚 ∼ 𝑁 0, 𝐾𝑜,𝑡

𝑚𝜎𝑜,𝑚𝑡
2 , 𝑊𝑡′

𝑚 ∼ 𝑁 0, 𝐾𝑤1,𝑡
′

𝑚 𝜎𝑤2,𝑚𝑡′
2 + 𝐾𝑤1,𝑡

′
𝑚 𝜎𝑤2,𝑚𝑡′

2 , 𝐵𝑡′′
𝑚 ∼ 𝑁 0, 𝐾𝑏,𝑡′′

𝑚 𝜎𝑏,𝑚𝑡′′
2
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Step 1: Multi omics data integration 

• To model the outcome as a sum of region-wise predictive effect from region 𝑚 = 1,… ,𝑀,
Consider different omics data(𝑇1

𝑚), within layer interaction(𝑇2
𝑚), and between layer interaction(𝑇3

𝑚).

• Consider joint effect(𝑜𝑡
𝑚) of omics data by using random effect term, similar to BLMM,

• Calculate marginal predictive effect from each of them by using linear kernel function.

𝑓𝑟𝑜𝑚 𝑌 = 𝑋𝑚𝛽𝑚 + ෍

𝑗∈𝑆𝑚

𝑜𝑗
𝑚 + 𝜖𝑛, Y = 𝑋𝑚𝛽𝑚 +෍

𝑡=1

𝑇1
𝑚

𝑜𝑡
𝑚 + ෍

𝑡′=1

𝑇2
𝑚

𝑊𝑡′
𝑚 + ෍

𝑡′′=1

𝑇3
𝑚

𝐵𝑡′′
𝑚 + 𝜖𝑛

𝑜𝑡
𝑚 ∼ 𝑁 0, 𝐾𝑜,𝑡

𝑚𝜎𝑜,𝑚𝑡
2 , 𝑊𝑡′

𝑚 ∼ 𝑁 0, 𝐾𝑤1,𝑡
′

𝑚 𝜎𝑤2,𝑚𝑡′
2 + 𝐾𝑤1,𝑡

′
𝑚 𝜎𝑤2,𝑚𝑡′

2 , 𝐵𝑡′′
𝑚 ∼ 𝑁 0, 𝐾𝑏,𝑡′′

𝑚 𝜎𝑏,𝑚𝑡′′
2
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Step 1: Multi omics data integration 

𝑜𝑡
𝑚 ∼ 𝑁 0, 𝐾𝑜,𝑡

𝑚𝜎𝑜,𝑚𝑡
2 , 𝑊𝑡′

𝑚 ∼ 𝑁 0, 𝐾𝑤1,𝑡
′

𝑚 𝜎𝑤2,𝑚𝑡′
2 + 𝐾𝑤2,𝑡

′
𝑚 𝜎𝑤2,𝑚𝑡′

2 , 𝐵𝑡′′
𝑚 ∼ 𝑁 0, 𝐾𝑏,𝑡′′

𝑚 𝜎𝑏,𝑚𝑡′′
2

• Each Kernel defined as:
• While Zmt

𝑘 , Zmt
𝑙 are the vectors of 𝑡 th omics data for individual 𝑘, 𝑙

• 𝑝𝑚𝑡 is the number of variants for 𝑡 th omics layer.

• 𝜃𝑚𝑡′
𝑤2𝑤 is the parameter for 𝑡 th omics layer indicates the rate of decay of the covariance.

𝐾𝑜,𝑡
𝑚 Zmt =

1

𝑝𝑚𝑡
Zmt
𝑘

T
1

𝑝𝑚𝑡
Zmt
𝑙

𝐾𝑤1,𝑡
′

𝑚 Zmt′ =
1

𝑝𝑚𝑡′
Zmt′
𝑘

T
1

𝑝𝑚𝑡′
Zmt′
𝑙

2

𝐾𝑤2,𝑡
′

𝑚 Zmt′; 𝜃𝑚𝑡′
𝑤2𝑤 =

1

2𝜋
sin−1

1
𝑝𝑚𝑡′

Zmt′
𝑘 𝑇

Zmt′
𝑙

(𝜃𝑚𝑡′
𝑤2𝑤+ Zmt′

𝑘 2
/𝑝𝑚𝑡′)(𝜃𝑚𝑡′

𝑤2𝑤 + Zmt′
𝑙 2

/𝑝𝑚𝑡′)

𝐾𝑏,𝑡′′
𝑚 = 𝐾𝑡1′′

𝑚 。𝐾𝑡2′′
𝑚

。= Hadamard product 
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Step 1: Multi omics data integration 

𝑜𝑡
𝑚 ∼ 𝑁 0, 𝐾𝑜,𝑡

𝑚𝜎𝑜,𝑚𝑡
2 , 𝑊𝑡′

𝑚 ∼ 𝑁 0, 𝐾𝑤1,𝑡
′

𝑚 𝜎𝑤2,𝑚𝑡′
2 + 𝐾𝑤2,𝑡

′
𝑚 𝜎𝑤2,𝑚𝑡′

2 , 𝐵𝑡′′
𝑚 ∼ 𝑁 0, 𝐾𝑏,𝑡′′

𝑚 𝜎𝑏,𝑚𝑡′′
2

• Variance-covariance matrix can be sum of kernels:

• All coefficients 𝜎𝑚𝑙
2 are non-negative, where

• So that,

Σ𝑚 =෍

𝑡=1

𝑇𝑚

𝐾𝑜,𝑡
𝑚𝜎𝑜,𝑚𝑡

2 +෍

𝑡=1

𝑇1
𝑚

𝐾𝑤1,𝑡
′

𝑚 𝜎𝑤2,𝑚𝑡′
2 +෍

𝑡=1

𝑇2
𝑚

𝐾𝑤2,𝑡
′

𝑚 𝜎𝑤2,𝑚𝑡′
2 +෍

𝑡=1

𝑇3
𝑚

𝐾𝑏,𝑡′′
𝑚 𝜎𝑏,𝑚𝑡′′

2 + 𝐼𝑛𝜎𝑜
2

𝜎𝑚𝑙
2 ∈ 𝜎𝑜,𝑚1

2 , … , 𝜎𝑤1,𝑚1
2 , … , 𝜎𝑤2,𝑚1

2 , … , 𝜎𝑏,𝑚1
2 , 𝑙 ∈ 1, …𝐿 = 𝑇1

𝑚 + 𝑇2
𝑚 + 𝑇3

𝑚 , 𝐾𝑚 =෍

𝑙=1

𝐿
𝜎𝑚𝑙
2

σ𝑙=1
𝐿 𝜎𝑚𝑙

2 𝐾𝑙
𝑚

Y = 𝑋𝑚𝛽𝑚 +෍

𝑡=1

𝑇1
𝑚

𝑜𝑡
𝑚 + ෍

𝑡′=1

𝑇2
𝑚

𝑊𝑡′
𝑚 + ෍

𝑡′′=1

𝑇3
𝑚

𝐵𝑡′′
𝑚 + 𝜖𝑛 ⇔ Y = ෍

𝑚=1

𝑀

(𝑋𝑚𝛽𝑚 + 𝑂𝑚) + 𝜖𝑛, 𝑂𝑚 ∼ 𝑁 0, 𝐾𝑚𝜎𝑚
2



• Under the Bernoulli-Gaussian prior for each 𝛽𝑚
𝑟 , re-parameterized by binary variable 𝛾𝑚

• Through TBLMM, we can select predictive regions(𝑂𝑚) when multiple regions are considered.

• 𝐷 𝑟𝑚 is the probability of success for a Bernoulli random trial of 𝑟𝑚

15

Step 2: Risk prediction

𝑌 = ෍

𝑚=1

𝑀

(𝑋𝑚
𝑟 𝛽𝑚

𝑟 + 𝑂𝑚) + 𝜖𝑛, 𝑂𝑚 ∼ 𝑁 0, 𝐾𝑚𝜎𝑚
2

⇔ 𝑌 = ෍

𝑚=1

𝑀

(𝑋𝑚
𝑟 Γ𝑚𝛽𝑚

𝑟 + 𝑂𝑚) + 𝜖𝑛, Γm = diag 𝛾𝑚 , 𝛾𝑚 = 𝛾1, . . 𝛾p
T
, 𝛾𝑚~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜃0

𝑂𝑚|𝐾
𝑚 , 𝜎𝑚

2 ∼ 𝐷 𝑟𝑚 𝑁(0, 𝐾𝑚𝜎𝑚
2 ) + 1 − 𝐷 𝑟𝑚 𝛿1, 𝑟𝑚~𝐵𝑒𝑟 𝛿0 , 𝐷 𝑟𝑚 , 𝛿1 = 0
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Simulation study

• To evaluate the performance of TBLMM, compared with TBLMM-LIN for only linear kernel
and OmicKrig that widely used method.

• For Multi-omics dataset,

1.  Gene expression data from ANDI (Alzheimer's disease Neuroimaging Initiative, n=712) 
contains an average number of approximately 1,300 mutations per genes.
- To mimic the real human genome, get the gene expression levels for each gene region by region.

2. Genomic data from ANDI, same.

3. Methylation data generated by methylKit

• 80% of train set were randomly selected, remain 20% for calculation of Pearson correlation and RMSE
(Root mean square error).
- higher correlation indicates better prediction on model
- lower RMSE, Root mean square of error between predicted and actual values indicates the better one.

• Repeat simulation 100 times each.
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Simulation study: single omics data

• The performance of TBLMM is better even when the outcome is affected by a single omics only, 
• such as gene expression (E) with linear effect, genomic (G), or methylation(epigenomic) (M).
• Of all, even single omics data was given, TBLMM demonstrates better performance.

E

G

M
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Real data

• For practical application, real data from ANDI (Alzheimer's disease Neuroimaging Initiative, n=712)

• To predict the illness based on the positron emission tomography (PET) image outcome,
Two different baseline datasets, AV45 (n=639) and FDG (n=501), were used. 

1. Whole genome sequencing (WGS, n=818) performed on blood sample with illumine Hiseq2000.

2. Gene expression profiling accompanied with WGS (n=811) using U219 Array.

• Total n=712 after quality control were used.

• The datasets were split into train and test sets with an 80% to 20% ratio, respectively,
and this process was repeated 100 times.
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Result

• For both AV45 and FDG, 
TBLMM showed higher prediction    
performance than OmicKrig.

• Comparing model with omics data 
and single layer omics only,
variance of outcome can be 
mainly explained by genetic    
effects.
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Discussion

• Proposed TBLMM is a flexible model because of a two step procedure,
first step focusing on dimensional reduction via kernel fusion
while second step for detect predictors through Bayesian linear mixed model

• It can accommodate various disease model.

• By selecting appropriate kernel, TBLMM can capture not only key predictors but also
discriminate between additive and non-additive omics effects.

• Based on real data from Alzheimer's patients, TBLMM performs better than OmicKrig with 
higher prediction accuracy.



Thank You


