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Precision Medicine
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Introduction

• The objective of precision medicine is to 

propose medical solutions at different stages 

of the health care (diagnosis, prognosis, 

treatment). 

• These medical solutions take into 

consideration the unique low-scale 

characteristics of the patients, known as 

omics profile.



Deep Learning in Biology 
• There is an increasing interest in the use of Deep Learning (DL) based methods as a 

supporting analytical framework in oncology.

• DL methods in oncology leverage multi-omics data and advanced algorithms, such as 

GCNs and CNNs, for enhanced cancer subtype classification, survival prediction, and drug 

response analysis.

• These techniques facilitate precise patient stratification and identification of novel 

biomarkers, driving the progression towards more tailored and effective cancer 

treatments in the realm of precision and personalized medicine.
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Introduction

• One of the most challenging problems that prevent the development of ML in healthcare 

is its lack of interpretability.

• In fact, most ML algorithms, including DL approaches, are considered black boxes. 

• This means that these models do not provide an explanation to users of their complex 

decision-making process, only their final prediction. 

• Thus, an important issue today is making ML algorithms interpretable. 

Black Box Model
Omics

Clinical 
Prediction 

Clinical



Challenge of Interpretability in ML
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Introduction

• Conceptual framework for enhancing 

the interpretability of machine 

learning models in the context of 

feature space. 

• Interpretability increases due to the 

integration of domain knowledge

• Expert level knowledge

• Database knowledge 



Explainability vs. Interpretability
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Introduction

• Explainability is often used interchangeably with interpretability, however the 

distinction must be made as the Explainability is product by the Interpretability. 

• Explainability refers to a collection of features from the interpretable domain that 

contributes to the production of an abstract statement. 

• Interpretability refers to mapping this statement into the domain the human expert can 

perceive, comprehend, and understand [1]. 

[1] Holzinger A, Müller H. Toward Human–AI interfaces to support explainability and causability in medical AI. Com- puter. 2021;54(10):78–86. https://doi.org/10.1109/MC.2021.3092610. 



An Example of Explainability vs. Interpretability
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Introduction

Patient A
Gene X (DNA): 

mutated

Gene Y (RNA) : 
high expression

Model

Explainability

"Patients with mutation X and 
high expression of gene Y tend to 
have a better response to drug Z."

Sensitive group 
for Drug Z 

Interpretability 
Gene X

Gene Y

" This might involve explaining that 
mutation X affects a particular signaling 
pathway known to be involved in drug Z's 
mechanism of action, and high expression 
of gene Y is a marker of a subtype of the 
disease that is known to be sensitive to 
drug Z."



Importance of Interpretability in Medical Field

• Especially in the medical field, understanding why a phenotype has been 
predicted is necessary to ensure that a prediction is based on reliable 
medical features rather than on irrelevant artifacts for its end users (e.g.
researchers, clinicians, patients). 

• Regardless of the model’s effectiveness, this will affect an end user’s 
decisions and confidence toward the model. 

• Finally, a detailed print-out of a model’s decision-making process may 
reveal a new biological signature that would otherwise remain undetected 
for an end user to investigate further. 
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Introduction to GraphGONet

• GraphGONet is introduced as a self-explaining neural network specifically 
designed to integrate knowledge from the Gene Ontology (GO) for 
phenotype prediction based on gene expression profiles of patients.
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Background: Gene Ontology

• The Gene Ontology (GO) is a major bioinformatics initiative that aims to 
standardize the representation of gene and gene product attributes across 
species and databases. 

• It provides a controlled vocabulary of terms for describing gene product 
characteristics and gene product annotation data from GO Consortium 
member databases. 
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Background: Gene Ontology

• Overview of GO 
• GO Identifier: Each box represents a term within the GO, and 

each term is identified by a unique identifier, such as 
“GO:0008152”. Each GO Identifier is used to index and 
reference specific biological processes, molecular functions, 
or cellular components. 

• Hierarchical GO Terms: Each term describe a specific 
biological concept. GO terms are hierarchically structured; 
more general terms are found at the top, while more specific 
terms are found at the lower levels. 

• Categories of GO: There are three main categories of GO: 
Biological process, Molecular functions, and Cellular 
Components.
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Background: Gene Ontology

• Three categories of GO 
• Biological Process: this domain encompasses 

processes and series of events performed by 
one or more gene products, such as a cellular 
process or signaling pathway. 

• Molecular Function: this domain describes the 
elemental activities of a gene product at the 
molecular level, such as binding or catalysis. 

• Cellular Component: this domain covers 
where gene products are active, suggesting the 
parts of a cell or its extracellular environment. 
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Self-Explainability of GraphGONet

• GraphGONet achieves self-explainability in its deep learning model through 
the following features:
• Layered Architecture Mimicking GO: The hidden layers of GraphGONet are organized to 

mimic the architecture of the Gene Ontology.
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• Neuron representing GO terms: Each neuron in these hidden 
layers represents a specific GO term. The connections between 
these neuron represent the relationships between different GO 
terms. These connections are oriented from lower to upper GO 
levels in the hierarchy.

• Selective Connectivity Based on GO Relationships: A neuron 
corresponding to a specific GO term is connected only to those 
genes and child neuron that are directly associated with that term.
This selective connectivity ensures that the propagation of 
information through the network accurately reflects the biological 
relationships encoded in the Gene Ontology



Self-Explainability of GraphGONet

• Propagation of Gene Expression Information
• The input layer receives the gene expression profile of a patient. 

• This information is then propagated through the network. For each neuron (representing a 
GO term), its activation value is computed based on the GE profile restricted to the genes 
associated with that GO term and the activations of its child nodes. 

• This process ensures that the activation of each node reflects both the direct gene 
expression data relevant to its GO term and the information from related terms.

• Capturing Biological Relationships
• Through this structure and process, GraphGONet captures the complex biological 

relationships encoded in the Gene Ontology. 

• This allows the network to integrate and interpret the GE data in the context of 
established biological knowledge.
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Architecture of GraphGONet

• Let (𝑋, 𝑌) be a training example, where 𝑋 = 𝑋!, … , 𝑋" is the GE profile of a 
patient with 𝑑 the number of genes, and 𝑌 = 0, 1 # is the indicator of its class 
that we want to predict with 𝐶 the number of classes. 
• 𝑦! = 1when the sample belongs to the class 𝑐

• 𝑦! = 0 otherwise
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Architecture of GraphGONet

• Input Layer receives the expression 
of  one gene. 

• The input layer is connected to a set 
of neurons organized in layers, 
which mimics the architecture of GO. 

• Each layer in the hierarchy 
represents a GO level where the first 
hidden layer corresponds to the most 
specific level, and the last hidden 
layer represent the root. 
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Architecture of GraphGONet

• Let 𝑮(𝒗) be the set of genes associated 
with a GO term corresponding to a 
neuron 𝒗 in GraphGONet and 𝑵(𝒗) the set 
of neurons corresponding to the children 
of the neuron 𝒗.

• The activation value of neuron ℎ$ is 
computed from both the expression 
vector 𝑋 % $ restricted to the genes in 
𝐺(𝑣) and the activation of its child 
neurons in 𝑁 𝑣 . 
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ℎ" = '
𝜎 𝑤#ℎ# " + 𝑤$ℎ$ " 𝑖𝑓 𝑁 𝑣 > 0

𝜎 ℎ# " 𝑖𝑓 𝑁 𝑣 = 0
where 𝑤# , 𝑤$ ∈ ℝ are trainable parameters shared 
by all nodes 𝑣, 𝜎 is the tanh activation function. 



Architecture of GraphGONet

• The activation value of neuron ℎ" : 

ℎ! = #
𝜎 𝑤"ℎ" ! + 𝑤#ℎ# ! 𝑖𝑓 𝑁 𝑣 > 0

𝜎 ℎ" ! 𝑖𝑓 𝑁 𝑣 = 0

• Embedding of the expression of gene set: 

ℎ"(!) = 𝑊!𝑋" ! + 𝑏! , where( 𝑊!∈ ℝ " ! , 𝑏! ∈ ℝ)

• Embedding of the activation of the neuron set 𝑁 𝑣 :

ℎ#(!) =
1

|𝑁 𝑣 | 7
&∈#(")

ℎ&
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Shared parameters

Neuron specific 
parameters



Architecture of GraphGONet

• Activation function – tanh 
• In this paper, the choice of the tanh function is 

more relevant than the ReLU one. 

• The tanh function will saturate the neurons 
selected in the next part of the network (the 
selection layer), to values close to +1 to -1.

• It makes the interpretation of the prediction 
much easier. 
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Link: https://paperswithcode.com/method/tanh-activation

https://paperswithcode.com/method/tanh-activation


Architecture of GraphGONet

• The next part of the model is the selection of the most 
activated neurons in absolute value. 
• Their associated GO terms will be used to support the explanation of a 

prediction. 

• The process consist of: 

• Concatenating the activation of all neurons, except those of the input layer. 

• Computing a mask 𝑀 identifying the most activated neurons 𝑀! = 1 if 𝑣 ∈
𝑡𝑜𝑝(𝑟), 𝑀! = 0 otherwise, where 𝑟 is the selection ratio and top is a function 
returning the indicies of the 𝐾" neurons selected. 

• Applying the mask to select the neurons 𝐻#$%$&' = 𝐻&()&*' 4 𝑀

• Note that 𝑟 is a hyperparameter of the model to fine-tune during the 
training phase. 
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Architecture of GraphGONet

• The last layer returns the output, where each neuron 
represents one of the C classes. 

• It is a linear combination of the output is computed from: 

𝑧( = ∑)*+, ℎ-./.(0,) 𝑤)( + 𝑏(, where 𝑊 ∈ ℝ,×3 , 𝑏 ∈ ℝ3

• The output activations are transformed into probabilities 
using the softmax function: 

𝑂5 =
exp(𝑧5)

∑67!# exp(𝑧8)
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Model Explainability

• The model automatically provides both a prediction and an explanation for a 
given patient. 
• The explanation takes the form of a list of GO terms implied in the final computation of the 

prediction, with their score of importance. 

• The number of GO terms in the list is determined by the selection ratio 𝑟.

• Therefore, we use an interpretation metric, the relevance score, computing the proportion 
of the output signal passing through the neurons in 𝐻%&'&!( and their outcoming 
connections. 

• The relevance score: 
𝑅)( = ℎ-./.(0,) × 𝑤)(
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Results
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Datasets

• Gene Expression Datasets 
• ArrayExpress Database (E-MTAB-3732) 

• Data: Heterogeneous microarray data from around 40,000 Affymetrix HG-U133Plus2 chip 
arrays. 

• Composition: After quality control and normalization, includes 54,675 input probes for 
27,887 cancer and non-cancer samples from 17 different tissue types. 

• Data split: 80% for training, 20% for testing, maintaining original proportions (66% 
cancer, 34% non-cancer).
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Datasets

• Gene Expression Datasets 
• The Cancer Genome Atlas (TCGA) – RNA-seq 

• Data: Includes 5,892 cancer samples across 11 cancer types and 482 non-cancer samples, 
totaling 56,602 input genes. 

• Data split: 80% for training, 20% for testing, maintaining original proportions. 
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Choice of the GO layers

• In these experiments, only the biological process subontology (GO-BP) of 
the GO is integrated into GraphGONet. 
• GO-BP was chosen as it is often preferred by biologists for explaining predictions. 

• The GO version used dates from 01-06-2020 and contains originally 29,112 GO-BP terms. 

• The directed acyclic graph is organized into levels, where the level of a GO term is 
determined according to its longest path with the root. 
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Sensitivity Analysis

• In the first experiment, they analyze the selection layer to measure its role in 
GraphGONet. 
• This layer is a key module to make the model self-explaining. 

• It extracts a subset of the most informative neurons and their associated GO terms to 
predict the outcome. 

• They evaluate the selection process and the value of the hyperparameter 𝑟
and compare this process with a random selection. 
• They vary the value of r in a range from 0.00005 to 1, which influences the number of 

selected GO terms. 

• When 𝑟 = 1, all the GO terms are selected. 

• Ten models are learned for each value of 𝑟 with different initialization of the weights and 
biases. 
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Sensitivity Analysis
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Results

• The average and the standard deviation of 
the models ’ accuracy are reported 
according to the value of 𝑟 in right figures. 

• They finds that ‘top’ selection generally 
outperforms random selection in both 
datasets used for cancer diagnosis. 

• The best performance is achieved with 
‘top’ selection at a ratio of 0.1 in both 
datasets. 

• Interestingly, optimal predictions are 
based on a small proportion of neurons 
(around 1,000).

Microarray

RNA-seq



Sensitivity Analysis
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Results

• The first model, with the best performance, 
used a ratio (r) of 0.01, selecting around 
100 Gene Ontology (GO) terms. 

• Despite not being the ratio with the best 
average performance, the difference between r 
= 0.01 and r = 0.1 is negligible (<0.005) for both 
datasets.

• The second model chose r = 0.001 for a 
reasonable balance between performance 
and interpretability, with a slight accuracy 
decrease of about 1.5% while reducing the 
number of selected GO terms to around 10.

Microarray

RNA-seq



Sensitivity Analysis
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Results

• Comparison with classical machine learning algorithms: 

• In another experiment, a proposed model (at r = 0.01) was 
compared with standard machine learning algorithms.

• These methods were trained on varying sizes of training sets, 
from full size to minimal (50 samples for the microarray dataset 
and 25 for the TCGA dataset).

• The study observed that the best accuracies were achieved with 
the highest number of samples, with deep learning methods and 
support vector machines performing similarly in both datasets.

• GraphGONet proved to be as competitive as non-explainable ML
and deep learning algorithms and clearly outperformed the only 
comparable explainable method (decision tree), regardless of 
the training set size. 

Microarray

RNA-seq



Interpretation of a patient outcome 
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Results

• They used model (at ratio of 0.001), resulting in it utilizing only 11 neurons and their associated GO 
terms. 
• Each patient's prediction is based on different subsets of these 11 GO terms.

• The selected GO terms typically belong to intermediate levels (between levels 6 and 10).

• The relevance score of each GO term is computed to identify the most influential terms in the subset. 

• This score indicates how significantly a GO term impacts the final prediction. 



Interpretation of a patient outcome 
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Results

• The 11 GO terms are ranked by their relevance score in descending (ascending) order for cancer 
patients.

• For instance, in the case of a cancer patient, all GO terms have a positive sign, with ten out of eleven 
terms having a relevance score close to the average of 0.92.
• Specific GO terms like GO: 0006915 and GO: 0043065, related to apoptosis, are identified as playing a role in cancer.

• The relevance score helps in discerning the effective impact of GO terms on the final prediction and 
quantifying prediction uncertainty.

•



Interpretation of the model 
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Results

• The approach involves measuring the similarity of explanations between patients by analyzing 
clustering based on relevance profiles.

• Relevance matrices of size (N, K), where N is the number of samples and K is the number of GO 
terms, are created for test samples. 

• Each row in these matrices represents a patient's relevance profile.



Interpretation of the model 
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Results

• Hierarchical clustering is applied to these matrices, using average linkage criteria and Euclidean 
distance as the metric.

• Dendrograms are used to illustrate this clustering.

• The dendrogram reveals clusters grouping patients from the same tissues, suggesting that certain 
neurons and corresponding GO terms can extract cancer features specific to certain tissue types.



Interpretation of the model 
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Results

• While the model is not initially designed to predict cancer tissue type, it successfully identifies 
multiple cancer signatures associated with different tissues. 

• Errors in prediction are distributed across clusters, with a notable proportion in the cluster related 
to blood tissue. 



Interpretation of the model 
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Results

• To evaluate the consistency, 100 GraphGONet
models with a selection ratio of 0.01 are 
trained.

• Relevance and occurrence matrices are 
computed, indicating whether a GO term has 
been selected by the selection layer.

• The frequency of GO term selection and the 
relevance score are analyzed to understand 
the model's predictions.

• GO terms that are frequently selected are 
considered to contain relevant biological 
information.
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GraphGONet’s Functionality and Validation
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Summary

• GraphGONet leverages a complete knowledge graph and its semantics to accurately perform 
prediction tasks.

• It has been validated on two datasets and can handle any knowledge represented by a Directed 
Acyclic Graph (DAG).

• The model introduces novel elements in sequential propagation and the selection layer, 
allowing the integration of genomic expression (GE) in end-to-end learning and providing 
biological insights into decision-making.

• Propagation in Gene Ontology (GO) layers originates from the process used in graph 
convolutional layers, enabling the inclusion of all GO levels and various connection types 
between neurons.



Advantages over traditional neural network
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Summary

• The number of parameters associated with connections inside hidden GO layers is reduced to 
two shared parameters, in contrast to about 23,900 parameters for an MLP with skip 
connections.

• Traditional neural networks often use complex post hoc methods to estimate gene relevance, 
leading to a large set of relevance values and less understandable explanations.

• GraphGONet, on the other hand, offers accessible and understandable explanations to 
biological experts by producing a small set of GO terms with associated relevance scores.

• GraphGONet's biological explanations are stable, as evidenced by similar sets of GO terms 
returned across 100 models with different parameter initializations.

• The model's explanations are based on higher semantic concepts (GO terms instead of genes), 
adding stability to the interpretations provided.

• The relevance score of each GO term is easy to compute and effectively quantifies their final 
contribution in the subset.



Further developments
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Summary

• Future work includes incorporating other ontologies, such as pathways, to enrich biological 
explanations and satisfy multimodal causability.

• There are plans to further study the model's uncertainties and develop a more rigorous 
quantitative estimation of GraphGONet's system reliability.
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