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Introduction

Precision Medicine

- The objective of precision medicine is to

propose medical solutions at different stages

Postoperative rehabilitation
management

of the health care (diagnosis, prognosis,

treatment).

« These medical solutions take into
‘ consideration the unique low-scale
Medical imaging diagnosis

characteristics of the patients, known as

Artificial Intelligence in
liver cancer

omics profile.

Risk screening, treatment response Adjuvant therapy
prediction and prognosis evaluation



Introduction

Deep Learning in Biology

 There is an increasing interest in the use of Deep Learning (DL) based methods as a

supporting analytical framework in oncology.

- DL methods in oncology leverage multi-omics data and advanced algorithms, such as
GCNs and CNNs, for enhanced cancer subtype classification, survival prediction, and drug

response analysis.

- These techniques facilitate precise patient stratification and identification of novel
biomarkers, driving the progression towards more tailored and effective cancer

treatments in the realm of precision and personalized medicine.



Introduction

Challenge of Interpretability in ML

« One of the most challenging problems that prevent the development of ML in healthcare

is its lack of interpretability.
- In fact, most ML algorithms, including DL approaches, are considered black boxes.

- This means that these models do not provide an explanation to users of their complex

decision-making process, only their final prediction.

« Thus, an important issue today is making ML algorithms interpretable.

omi
fHes Clinical

- Black Box Model Prediction
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Introduction

Challenge of Interpretability in ML

Interpretability

Expert-level Database
knowledge  knowledge

Integration in
the model
architecture

Integration at
the input data

the post-hoc PEhestng a

analysis a
=

Integration in

Interpretability increases
due to the integration of
domain knowledge

« Conceptual framework for enhancing
the interpretability of machine
learning models in the context of

feature space.

 Interpretability increases due to the
integration of domain knowledge
« Expert level knowledge

« Database knowledge

»

>

Feature space



Introduction

Explainability vs. Interpretability

- Explainability is often used interchangeably with interpretability, however the
distinction must be made as the Explainability is product by the Interpretability.

- Explainability refers to a collection of features from the interpretable domain that

contributes to the production of an abstract statement.

- Interpretability refers to mapping this statement into the domain the human expert can

perceive, comprehend, and understand [1].

[1] Holzinger A, Miiller H. Toward Human—AI interfaces to support explainability and causability in medical AI. Com- puter. 2021;54(10):78—86. https://doi.org/10.1109/MC.2021.3092610.



Introduction

An Example of Explainability vs. Interpretability

Patient A
Gene X (DNA):

mutated

Gene Y (RNA) :
J high expression

Gene X

Sensitive group
for Drug Z

/

Explainability

"Patients with mutation X and
high expression of gene Y tend to
have a better response to drug Z."

Interpretability

" This might involve explaining that
mutation X affects a particular signaling
pathway known to be involved in drug Z's
mechanism of action, and high expression
of gene Y is a marker of a subtype of the
disease that is known to be sensitive to

drug Z."
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Introduction

Importance of Interpretability in Medical Field

- Especially in the medical field, understanding why a phenotype has been
predicted is necessary to ensure that a prediction is based on reliable
medical features rather than on irrelevant artifacts for its end users (e.g.
researchers, clinicians, patients).

- Regardless of the model’s effectiveness, this will affect an end user’s
decisions and confidence toward the model.

- Finally, a detailed print-out of a model’s decision-making process may
reveal a new biological signature that would otherwise remain undetected
for an end user to investigate further.

11
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GraphGONet

Introduction to GraphGONet

« GraphGONet is introduced as a self-explaining neural network specifically
designed to integrate knowledge from the Gene Ontology (GO) for
phenotype prediction based on gene expression profiles of patients.
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GraphGONet

Background: Gene Ontology

- The Gene Ontology (GO) is a major bioinformatics initiative that aims to
standardize the representation of gene and gene product attributes across
species and databases.

- It provides a controlled vocabulary of terms for describing gene product
characteristics and gene product annotation data from GO Consortium

member databases.

GENEONTOLOGY

Unifying Biology

14



GraphGONet

Background: Gene Ontology

« Overview of GO

« GO Identifier: Each box represents a term within the GO, and
each term is identified by a unique identifier, such as
“G0:0008152”. Each GO Identifier is used to index and
reference specific biological processes, molecular functions,
or cellular components.

- Hierarchical GO Terms: Each term describe a specific
biological concept. GO terms are hierarchically structured;
more general terms are found at the top, while more specific
terms are found at the lower levels.

« Categories of GO: There are three main categories of GO:
Biological process, Molecular functions, and Cellular
Components.
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GraphGONet

Background: Gene Ontology

 Three categories of GO

Biological Process: this domain encompasses
processes and series of events performed by
one or more gene products, such as a cellular
process or signaling pathway.

Molecular Function: this domain describes the
elemental activities of a gene product at the
molecular level, such as binding or catalysis.

Cellular Component: this domain covers
where gene products are active, suggesting the
parts of a cell or its extracellular environment.
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GraphGONet

Self-Explainability of GraphGONet

« GraphGONet achieves self-explainability in its deep learning model through
the following features:

« Layered Architecture Mimicking GO: The hidden layers of GraphGONet are organized to
mimic the architecture of the Gene Ontology.

- Neuron representing GO terms: Each neuron in these hidden
layers represents a specific GO term. The connections between
these neuron represent the relationships between different GO
terms. These connections are oriented from lower to upper GO
levels in the hierarchy.

« Selective Connectivity Based on GO Relationships: A neuron
corresponding to a specific GO term is connected only to those
genes and child neuron that are directly associated with that term.
This selective connectivity ensures that the propagation of

GO layers information through the network accurately reflects the biological

relationships encoded in the Gene Ontology

17



GraphGONet

Self-Explainability of GraphGONet

- Propagation of Gene Expression Information
 The input layer receives the gene expression profile of a patient.

« This information is then propagated through the network. For each neuron (representing a
GO term), its activation value is computed based on the GE profile restricted to the genes
associated with that GO term and the activations of its child nodes.

- This process ensures that the activation of each node reflects both the direct gene
expression data relevant to its GO term and the information from related terms.

 Capturing Biological Relationships

« Through this structure and process, GraphGONet captures the complex biological
relationships encoded in the Gene Ontology.

« This allows the network to integrate and interpret the GE data in the context of
established biological knowledge.

18



GraphGONet

Architecture of GraphGONet

- Let (X,Y) be a training example, where X = [X,, ..., X;] is the GE profile of a
patient with d the number of genes, and Y = {0, 1}¢ is the indicator of its class
that we want to predict with ¢ the number of classes.

* y. = 1 when the sample belongs to the class c

* y. = 0 otherwise

Q Q «Q Q
3 ®© @ 3
= = = =
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GraphGONet

Architecture of GraphGONet

« Input Layer receives the expression
of one gene.

- The input layer is connected to a set
of neurons organized in layers,
which mimics the architecture of GO.

« Each layer in the hierarchy
represents a GO level where the first
hidden layer corresponds to the most
specific level, and the last hidden
layer represent the root.

Input layer GO layers
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GraphGONet

Architecture of GraphGONet

- Let G(v) be the set of genes associated

M Ry

with a GO term corresponding to a

neuron v in GraphGONet and N(v) the set

of neurons corresponding to the children

of the neuron v.

 The activation value of neuron 4, is

computed from both the expression

vector X, restricted to the genes in

G (v) and the activation of its child

neurons in N (v).

B {0 (Wehew) + wnhnwy) if INW)| >0  where wg, wy € R are trainable parameters shared
, =

o(hgw)) if IN(w)| =0 Dbyallnodes v, ¢ is the tanh activation functiozr}.




GraphGONet

Architecture of GraphGONet

 The activation value of neuron 4, :

o(Wehgwy + Wyhywy) if IN(v)| >0 Shared parameters
o(hew)) if INW)| =0

- Embedding of the expression of gene set:

v:

hewy = WuXgw) + by, Where( W, e RI®I b, € R) Neuron specific

- Embedding of the activation of the neuron set N(v): parameters

1
o = W) 2 M

ueN(v)
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GraphGONet

Architecture of GraphGONet

« Activation function — tanh

- In this paper, the choice of the tanh function is Tanh
more relevant than the ReLU one. 1.0
« The tanh function will saturate the neurons €& ="
selected in the next part of the network (the 0.5 o(z)= e +e
selection layer), to values close to +1to -1.
- It makes the interpretation of the prediction -10 -5 %0 ) 5 10
much easier.
-{).
0

Link: https://paperswithcode.com/method/tanh-activation
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GraphGONet

Architecture of GraphGONet

- The next part of the model is the selection of the most
activated neurons in absolute value. 1k

- Their associated GO terms will be used to support the explanation of a
prediction.

« The process consist of:

- Concatenating the activation of all neurons, except those of the input layer.

« Computing a mask M identifying the most activated neurons M,, = 1if v €
top(r), M, = 0 otherwise, where r is the selection ratio and top is a function
returning the indicies of the K, neurons selected.

>
IO |- | QIO |- |Q|Q|—=|O

« Applying the mask to select the neurons H,.j..; = Heonear * M

« Note that r is a hyperparameter of the model to fine-tune during the  selection layer Output layer
training phase.

24



GraphGONet

Architecture of GraphGONet

 The last layer returns the output, where each neuron
represents one of the C classes.

- Itis alinear combination of the output is computed from:

Ze = X5_1 Psetect,j Wjc + be, Where (W € R¥*¢, b € R®)
- The output activations are transformed into probabilities
using the softmax function:
exp(Z)
JC'=1 exp(z;)

0. =

1 h,

>
IO |- | QIO |- |Q|Q|—=|O

Selection layer

Output layer
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GraphGONet

Model Explainability

- The model automatically provides both a prediction and an explanation for a
given patient.

 The explanation takes the form of a list of GO terms implied in the final computation of the
prediction, with their score of importance.

« The number of GO terms in the list is determined by the selection ratio r.

« Therefore, we use an interpretation metric, the relevance score, computing the proportion
of the output signal passing through the neurons in H,,.; and their outcoming
connections.

« The relevance score:

c _
Rj — hselect,j X ch

26
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Results

Datasets

« Gene Expression Datasets
« ArrayExpress Database (E-MTAB-3732)

- Data: Heterogeneous microarray data from around 40,000 Affymetrix HG-U133Plus2 chip
arrays.

- Composition: After quality control and normalization, includes 54,675 input probes for
27,887 cancer and non-cancer samples from 17 different tissue types.

- Data split: 80% for training, 20% for testing, maintaining original proportions (66%
cancer, 34% non-cancer).

Tissue type abdomen adrenal blood bone brain breast colon kidney liver
##samples 142 83 4283 3525 869 2171 1239 657 730
Tissue type lung lymph node ovary pancreas prostate skin stomach uterus Total

##samples 1415 567 573 243 415 835 154 572 18473

28



Results

Datasets

« Gene Expression Datasets
- The Cancer Genome Atlas (TCGA) — RNA-seq

- Data: Includes 5,892 cancer samples across 11 cancer types and 482 non-cancer samples,
totaling 56,602 input genes.

- Data split: 80% for training, 20% for testing, maintaining original proportions.

Class BRCA HNSC KIRC LGG LIHC LUAD LUSC oV PRAD THCA UCEC NT Total
#train 705 320 344 327 238 341 321 239 318 321 353 309 4136
#validation 176 80 86 82 59 85 81 60 80 81 88 77 1035
#test 221 100 108 102 74 107 100 75 100 100 110 96 1293
Total 1102 500 538 511 371 533 502 374 498 502 551 482 6464

Class frequency (%) 17.05 7.74 8.32 7.91 5.74 8.25 7.77 5.79 7.71 TodT 8.53 7.46 100

29



Results

Choice of the GO layers

- In these experiments, only the biological process subontology (GO-BP) of
the GO is integrated into GraphGONet.

« GO-BP was chosen as it is often preferred by biologists for explaining predictions.
« The GO version used dates from 01-06-2020 and contains originally 29,112 GO-BP terms.

« The directed acyclic graph is organized into levels, where the level of a GO term is
determined according to its longest path with the root.

7/

GO level 1 2 3 4 5 6 7 8 9

#GO terms 1 23 116 294 603 1089 1404 1500 1614

avg(genes connected) 372 31.10 84.41 51 35.12 36.70 36.01 31.61 27.61

std(genes connected) - 37.49 175.67 110.81 71.99 82.89 69.06 75.15 50.75
GO level 10 11 12 13 14 15 16 17 18 19
#GO terms 1453 1099 706 388 198 96 53 20 5 1

avg(genes connected) 26.78 26.20 31.29 47.13 25.98 21.70 11.52 12.27 16.67 6
std(genes connected) 62.12 53.46 105.56 220.48 53.06 23.66 17.81 17.51 3.21

3V



Sensitivity Analysis

- In the first experiment, they analyze the selection layer to measure its role in
GraphGONet.

- This layer is a key module to make the model self-explaining.

It extracts a subset of the most informative neurons and their associated GO terms to
predict the outcome.

- They evaluate the selection process and the value of the hyperparameter r
and compare this process with a random selection.

« They vary the value of r in a range from 0.00005 to 1, which influences the number of
selected GO terms.

« Whenr = 1, all the GO terms are selected.

- Ten models are learned for each value of r with different initialization of the weights and
biases.

31



Results

Sensitivity Analysis

The average and the standard deviation of

the models ’ accuracy are reported

according to the value of r in right figures.
They finds that ‘top’ selection generally

outperforms random selection in both
datasets used for cancer diagnosis.

The best performance is achieved with
‘top’ selection at a ratio of 0.1 in both

datasets.

Interestingly, optimal predictions are
based on a small proportion of neurons
(around 1,000).
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Sensitivity Analysis

- The first model, with the best performance,
used a ratio (r) of 0.01, selecting around
100 Gene Ontology (GO) terms.

« Despite not being the ratio with the best
average performance, the difference between r
= 0.01andr = 0.1is negligible (<0.005) for both
datasets.

- The second model choser = 0.001 for a
reasonable balance between performance
and interpretability, with a slight accuracy
decrease of about 1.5% while reducing the
number of selected GO terms to around 10.
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Results

Sensitivity Analysis

- Comparison with classical machine learning algorithms:

- Inanother experiment, a proposed model (at r = 0.01) was

(b)

0.95 1

0.90 A1

0.85 1

0.80 1

0.75 A

Accuracy

0.70 1

compared with standard machine learning algorithms.

0.65 4

These methods were trained on varying sizes of training sets, 060 1

from full size to minimal (50 samples for the microarray dataset  ©s51

and 25 for the TCGA dataset).

The study observed that the best accuracies were achieved with

the highest number of samples, with deep learning methods and
support vector machines performing similarly in both datasets.

GraphGONet proved to be as competitive as non-explainable ML, o=

and deep learning algorithms and clearly outperformed the only 3o~
comparable explainable method (decision tree), regardless of g os
the training set size. as
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Results

Interpretation of a patient outcome

terms.

- Each patient's prediction is based on different subsets of these 11 GO terms.

noncancer cancer
GO:0006915 | 13
apoptotic Brocess
GO:0000209 1.25
rotein polyubiquitination
B it 63:0051896 11
regulation of protein kinase B signaling
GO:0007165 | 1.04
signal transduction
GO:0043065 1.02
positive regulation of apoptotic process )
:0072659 | 0.9
protein localization to plasma membrane
GO:0035556 | 0.9
intracellular signal transduction
GO:0000122 | 0.86
negative regulation of transcription by RNA polymerase |l
GO:0008283 0.83
cell population proliferation
GO:0016477 | 0.76
cell migration
GO:0001916 |
positive regulation of T cell mediated cytotoxicity . " L % . . 3
-15 =10 =05 0.0 0.5 1.0 15 20 25

Sample correctly predicted cancer with a probability ot 1 and a total relevance score ot 10.58

(b)

innate immune response activating cell surface receptor signaligg gg(()hway

This score indicates how significantly a GO term impacts the final prediction.

noncancer

GO:0006357 |
regulation of transcription by RNA polymerase Il
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051056
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The selected GO terms typically belong to intermediate levels (between levels 6 and 10).

They used model (at ratio of 0.001), resulting in it utilizing only 11 neurons and their associated GO

The relevance score of each GO term is computed to identify the most influential terms in the subset.

cancer

=1.5

Sample correctly predicted noncancer with a probability of 0.996 and a total relevance of -5.47
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Results

Interpretation of a patient outcome

The 11 GO terms are ranked by their relevance score in descending (ascending) order for cancer
patients.

- For instance, in the case of a cancer patient, all GO terms have a positive sign, with ten out of eleven
terms having a relevance score close to the average of 0.92.

+ Specific GO terms like GO: 0006915 and GO: 0043065, related to apoptosis, are identified as playing a role in cancer.

The relevance score helps in discerning the effective impact of GO terms on the final prediction and
quantifying prediction uncertainty.

noncancer cancer
noncancer cancer
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apoptotic Brocess
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125
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protein localization to plasma membrane positive regulation of Ras protein signal transduction
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Results

Interpretation of the model

 The approach involves measuring the similarity of explanations between patients by analyzing
clustering based on relevance profiles.

 Relevance matrices of size (N, K), where N is the number of samples and K is the number of GO
terms, are created for test samples.

- Each row in these matrices represents a patient's relevance profile.
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Results

Interpretation of the model

« Hierarchical clustering is applied to these matrices, using average linkage criteria and Euclidean
distance as the metric.

« Dendrograms are used to illustrate this clustering.

« The dendrogram reveals clusters grouping patients from the same tissues, suggesting that certain
neurons and corresponding GO terms can extract cancer features specific to certain tissue types.

N abdomen brain . Jiver EEN pancreas BN terus
N adrenal breast N lung HEEN prostate EEN cancer
EEN blood s colon lymph node N <kin noncancer
BN bone BN kdney N ovary E stomach
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Results

Interpretation of the model

- While the model is not initially designed to predict cancer tissue type, it successfully identifies
multiple cancer signatures associated with different tissues.

« Errors in prediction are distributed across clusters, with a notable proportion in the cluster related
to blood tissue.

N abdomen brain . Jiver EEN pancreas BN terus
N adrenal breast N lung HEEN prostate EEN cancer
EEN blood s colon B lymph node W skin noncancer
BN bone BN kdney N ovary E stomach
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Results

Interpretation of the model

To evaluate the consistency, 100 GraphGONet
models with a selection ratio of 0.01 are
trained.

Relevance and occurrence matrices are
computed, indicating whether a GO term has
been selected by the selection layer.

The frequency of GO term selection and the
relevance score are analyzed to understand
the model's predictions.

GO terms that are frequently selected are
considered to contain relevant biological
information.
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.. -
-l +

000 €000 10000 12000 14000 16000
Number of occurrences

0 2000 4000
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Summary

GraphGONet’s Functionality and Validation

« GraphGONet leverages a complete knowledge graph and its semantics to accurately perform
prediction tasks.

« It has been validated on two datasets and can handle any knowledge represented by a Directed
Acyclic Graph (DAG).

« The model introduces novel elements in sequential propagation and the selection layer,
allowing the integration of genomic expression (GE) in end-to-end learning and providing
biological insights into decision-making.

« Propagation in Gene Ontology (GO) layers originates from the process used in graph
convolutional layers, enabling the inclusion of all GO levels and various connection types
between neurons.
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Summary

Advantages over traditional neural network

« The number of parameters associated with connections inside hidden GO layers is reduced to
two shared parameters, in contrast to about 23,900 parameters for an MLP with skip
connections.

« Traditional neural networks often use complex post hoc methods to estimate gene relevance,
leading to a large set of relevance values and less understandable explanations.

« GraphGONet, on the other hand, offers accessible and understandable explanations to
biological experts by producing a small set of GO terms with associated relevance scores.

« GraphGONet's biological explanations are stable, as evidenced by similar sets of GO terms
returned across 100 models with different parameter initializations.

- The model's explanations are based on higher semantic concepts (GO terms instead of genes),
adding stability to the interpretations provided.

« The relevance score of each GO term is easy to compute and effectively quantifies their final
contribution in the subset.
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Summary

Further developments

« Future work includes incorporating other ontologies, such as pathways, to enrich biological
explanations and satisfy multimodal causability.

« There are plans to further study the model's uncertainties and develop a more rigorous
quantitative estimation of GraphGONet's system reliability.
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