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 Introduction



Meta-analysis for molecular epidemiology in large populations has seen

great success in linking high-dimensional ‘omic features to complex health-
related phenotypes.

One example of this is in Genome-wide association studies (GWAS [1]), ” O etmo et
where appropriate study scale, achieved by rigorous integration of ry @C’ﬁdw
multiple cohorts, has both facilitated reproducible discoveries (in the form 1T |

of disease-associated loci[2-4]) and addressed confounding due to
unobserved population structure [5].
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What’s the problem?

Meta-analysis of microbial community profiles presents unique quantitative challenges
relative to other types of ‘omics data such as GWAS [10] or gene expression [11].

These include particularly strong batch, inter-individual, and inter-population
differences, and statistical issues including zero-inflation and compositionality [12, 13].

Consequently, methods to correct for cohort and batch effects from other ‘omics
settings [14-17] are not directly appropriate
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What’s the problem?

To date, there are no methods permitting the joint analysis of batch-corrected
microbial profiles for most study designs.

In the absence of methods appropriate for large-scale microbial meta-analysis, it
is unclear whether reproducible population structure in the microbiome, such as

microbially driven IBD “subtypes”, exists to help explain the clinical heterogeneity of
these conditions.

In this work, a uniform statistical framework for population-scale meta-analysis of
microbiome data is introduced and validated
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A statistical framework for meta-analysis of microbial community profiles

MMUPHin, A collection of novel methods for meta-analysis of environmental exposures,
phenotypes, and population structures across microbial community studies, specifically
accounting for technical batch effects and interstudy differences (“Methods,” Fig. 1a).

. Meta-analysis?
Meta-analysis in this context likely involves synthesizing data
from multiple studies to gain a more comprehensive

understanding of the microbial population structure.

Population structure : This term generally refers to the
composition of a community in terms of its constituent
members. It means the different types of microorganisms
present in a community, their relative abundances, and how

they are organized or distributed.
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MMUPHin_Correct — Batch and Study effect correction

(Meta-Analysis Methods with a Uniform Pipeline for Heterogeneity in
microbiome studies)

For microbial community batch correction, they extended the batch correction method
developed for gene expression data in ComBat[15] with an additional component to
allow for the zero-inflated nature of microbial abundance data.

Let’s say sample read count Y was modeled with respect to both batch variable and
biologically relevant covariate(s) X:

Yijp = expiBpXi; + 0 (Vip + Sip€ijp)} X1ijp »

where
* iindicates batch/study
* jindicates sample

M et h O d S * pindicates feature .



MMUPHin_Correct — Batch and Study effect correction

Let’s break down

The linear part of the model, B,X;; + 0(¥i, + 8ip€ijp). is the combination of effects from covariates,

batch variable, random error.
However, this linear combination can result in any real number, including negatives.

BpXii + 0(Vip + SipEijp)

\ N
1) 2) 3)

covariates batch variables random error
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MMUPHin_Correct — Batch and Study effect correction

Let’s break down

The linear part of the model, B,X;; + 0(¥i, + 8ip€ijp). is the combination of effects from covariates,
batch variable, random error.

However, this linear combination can result in any real number, including negatives.

/
exp{BpXi; + U()’ip\"‘/@ipfivm\)}
1) 2) 3)
covariates batch variables random error
To ensure that the outcome (Y;;,,) remains positive and interpretable in the context of count data, tite
linear predictor is placed inside an exponential function.

By using the exponential of a linear combination of variables, the model implicitly assumes that the

count data follow a log-normal distribution, a common assumption for many types of biological
data.

Methods
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MMUPHin_Correct — Batch and Study effect correction

Let’s break down

A feature-specific standardization factor

€X {IBPX U( lp ip€ij )}
p/_ + oly; K

Covariate-specific coefficients Independent error term following standard
normal distribution.

El'jp"’N(O,l)
Batch-specific location and scale parameters
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MMUPHin_Correct — Batch and Study effect correction
Let’s break down

Modelled with normal prior

2
VipNN(Yi' i) Modelled with inverse-gamma prior

8ip~Inverse Gamma(A;, 6;)

, /
eXp{ﬁpXij + 0 (Yip + Sip€ijp)} Xlijp
S\

A binary (0,1) zero-count indicator, to
allow for zero-inflation of features.

Hyperparameters (Y}, Tiz, A;,0;) are estimated with empirical Bayes estimators as in ComBat
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MMUPHin_Correct — Batch and Study effect correction

The posterior means, yi, and 52, along with standard frequentist estimates ,E’p and d,,
are used to provide batch-corrected count data:

Y"_‘_-' _ l]p 'Bp Lj ylpo-p ,8
ijp = €XP 53 p Xlijp
ip

where

* iindicates batch/study
* jindicates sample

* pindicates feature
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MMUPHin_Correct — Batch and Study effect correction

Let’s break down The batch effect that needs to be adjusted.
By subtracting this from the original read count Yijp,
Original sample read count data the formula aims to remove the influence of batch-

) ifi iati
Yiip = eXp{,BpXij + U(Vip +5; EUP)} X1, specific variations

L

— X ' 6
— Yijp p l] —Yip9p

Y:;., = ex
=

+ BpXiit X1y

the covariate effects

batch- specific scale parameter §;, After adjusting for batch effects and scaling, the

The difference (Y;j, — BpX;; — ¥ip0p) is then scaled by the batch- covariate effects 8,X;; are added back. This
specific scale parameter Sip. ensures that the biological information encoded
This scaling adjusts the variance of the read counts, aligning in the covariates is retained in the batch-

them across different batches. corrected data.
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MMUPHin_Correct — Batch and Study effect correction

In practice, the user provides

- sample microbial abundance table(Y),

- batch/study information, and

- optionally any other covariates X that are potentially confounded
with batch but encode important biological information.

Example R codes)
fit_adjust_batch <- adjust_batch(feature_abd = CRC_abd,

batch = "studyID",

covariates = "study_condition",
data = CRC_meta,

control = list(verbose = FALSE))

CRC_abd_adj <- fit_adjust_batch$feature_abd_adj

MMUPHin software [36] is available at Bioconductor.

Methods o


https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02753-4
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MMUPHin_Correct — Batch and Study effect correction

With this model specification, MMUPHin_Correct is expected to often reduce,
rather than fully correct batch differences.

This is because MMUPHIin_Correct focuses on correcting non-zero abundance batch
effects, and does not change features’ presence/absence across batches.

A binary (0,1) zero-count indicator, to
allow for zero-inflation of features.

XIijp
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MMUPHin_Correct — Batch and Study effect correction

 “Correcting” a feature’s batch-specific presence to absence is inappropriate, as
substantial non-zero read counts indicate biological presence rather than technical
artifacts.

* |Imputing non-zero abundance for batch-specific absence is technically challenging
in our linear modelling framework, as the per-sample/feature noise €;;,, cannot be
reliably inferred for inflated zero values.
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD
mucosal/stool microbiomes were used

* They collected and uniformly processed ten published 16S studies of the IBD gut
microbiome totaling 2179 subjects and 5151 samples.
* These studies range widely in terms of cohort designs and population characteristics,
including
= recent-onset and established disease patients,
= cross-sectional and longitudinal sampling,
= pediatric and adult populations,
= diseases (CD and UC),
= treated and treatment-naive patients,
= biopsy and stool samples, and
= inclusion of healthy/non- IBD controls.
* Covariates were manually curated to ensure consistency across studies (“Methods”).
* Major factors available from all or most studies included

* demographics (age/sex/race), biogeography, disease location and/or extent, antibiotic
usage, immunosuppression, and steroid and/or 5-ASA usage.

Materials
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD
mucosal/stool microbiomes were used

Study Brief Nsubject Nsample Phenotype(s) Age Gender Sample
description type(s)
PROTECT Longitudinal 405 1212(539) UC405 12.71(3.29) Male 52%/  Biopsy 22%/ Jansson-
[23] cohort of Female 48% Stool 78% Lamendella
newly diag- [22)
nosed UC
RISK [7] Pediatric 631 882 CD 430/Con- 12.16(3.22) Male 59%/  Biopsy 72%/ Pouchitis
cohort of trol 201 Female 41% Stool 28% [27)
treatment-
naive CD
Herfarth [26] Densely 31 860 (31) CD 19/Control  36.03(14.12) Male 35%/  Stool
(daily) 12 Female
sampled 58%/Miss-
CS-PRISM
(left, right) Table 1. Ten uniformly processed 16S rRNA (28]
gene sequencing studies of the IBD mucosal/stool
microbiomes. HMP2 9]
For longitudinal cohorts, numbers in parentheses
indicate baseline sample size.
For age, mean and standard error (parenthesized) are
shown. Additional covariates are summarized in MucosallBD
Additional file 3: Table S1 .
LSS-PRISM
(30]
BIDMC-FMT
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B1

Longitudinal
follow-up
with fecal
samples

Patients
recruited
underwent
IPAA for
treatment
of UCor
FAP prior to
enroliment.

Cross-
sectional
cohort
nested in
PRISM

Large cohort
of newly
diagnosed
IBD with
multi-omics
measure-
ment.

Pediatric
cohort with
Paneth cell
phenotypes
Longitudi-
nal cohort
nested in
PRISM.

FMT Trial
design

137

353

397

81

83

683 (137)

577

467

177 (162)

132

88(19)

16

CD 49/UC 60/
Control 28

CD 42/UC 266/
Control 45

CD 215/UC
144/Control 38

CD37/uc2z/
Control 22

CD 36/Control
47

CD12/UCe

b8

46.19 (1358)

41.68(15.22)

29.76 (1963)

1293 (3.65)

3037 (1052)

3838(12.73)

Male 42%/
Female 58%

Male 52%/
Female 48%

Male 47%/
Female 53%

Male 51%/
Female 49%

Male 58%/
Female 42%

Male 39%/
Female 61%

Male 62%/
Female 38%

Stool

Biopsy

Biopsy 29%/
Stool 71%

Biopsy

Biopsy

Stool

Stool
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD

mucosal/stool microbiomes were used

Fig 1b. MDS ordination of all microbial profiles (Bray-Curtis dissimilarity) before batch correction visualize the
strongest associations with gut microbial composition, including disease, sample type (biopsy or stool), cohort
(visualized separately for larger and smaller studies), and dominant phyla

(1) Disease & sample type (2) Cohorts sepa

Disease Sample type Study (>= 200 subjects)

Axis 2 (16.77%)

Axis 1 (21.31%)

+ CD uc « Control + Biopsy Stool

.-- it N~ R E U B
* CS- . lis  + BIDM
PROTECT |] * RISK LSS-PRISM « Janson-Lamendella « Herfarth

rated by sample sizes (3) Dominant phyla

Firmicutes Bacteroidetes

Study (< 200 subjects)

. L

C-FMT « MucosallBD * HMP2 | . [ .

Relative abundance 0 1 Relative abundance 0 1

* Microbiome differences associated with disease were notable even without normalization.
* However, this can be misleading due to the confounding of cohort structure between studies, such as the differentiation

between|RISK|(a predominantly mucosal study of CD) and

Materials

PROTECTl(a predominantly stool study of UC).
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD
mucosal/stool microbiomes were used
Fig 1b. MDS ordination of all microbial profiles (Bray-Curtis dissimilarity) before batch correction visualize the
strongest associations with gut microbial composition, including disease, sample type (biopsy or stool), cohort

(visualized separately for larger and smaller studies), and dominant phyla

(1) Disease & sample type (2) Cohorts separated by sample sizes (3) Dominant phyla

Study (>= 200 subjects) Study (< 200 subjects)

-

Disease Sample type Firmicutes Bacteroidetes

Axis 2 (16.77%)

Axis 1 (21.31%)

* CS-PRISM -+ Pouchitis + BIDMC-FMT « MucosallBD * HMP2
PROTECT + RISK LSS-PRISM « Janson-Lamendella « Herfarth

Relative abundance 0 1 Relative abundance 0 1

+ CD uc « Control + Biopsy Stool

* Inter-individual differences largely independent of population or disease, such as Bacteroidetes versus
Firmicutes dominance, were also universal among studies and sample types as expected [9, 32].
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD
mucosal/stool microbiomes were used

Fig 2a, b. MMUPHIin_Correct is effective for covariate-adjusted batch effect reduction while maintaining
the effect of positive control variables

b Original MMUPHin_Correct
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* For panela, PERMANOVA R2 statistics summarize the effect of batch and
positive/negative control variables on the overall microbial composition, before

and after batch correction.
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Datasets

Liver cancer serum dataset

Approach Metagenome
Sample size 571
No. of OTUs 547
No. of batches 4
Batch effect source InStitUt?onS
(SNUH,AJUH, Paik, Borame)
Sample type Serum sample
Study design Cross-section study
Sequence region V3-V4

Application to an external dataset
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Application to liver cancer serum dataset

MDS plots
1.0 1
1.01
0.5 .
0.5 ’ : ¢
®
Batch 4 Batch
o 0.0 . contol | o 007 . . * AJUH
% e HCC 8 ¢ Boramae
-0.54 e LC i 2_0.5- ¢ Paik
i e SNUH
-1.0 1 1.0
-1.54
T -1.54
1 0 1
MDS 1 1 0 1

Application to an external dataset .



Application to liver cancer serum dataset

Results) PERMANOVA R? (left) and MDS plot (right)

i Bray-curtis Aitchison
Dissimilarity "
Methods .
Bray-Curtis | Aitchison |  Before o
i correction
Before 0.0992 0.0899 A
correction I S
Percentile- | 1812652 | 0.09898626 |
Normalization ;
. MMUPHin ,, )
ConQur 0.0699 0.3336 . _Correct
(Ling et al., 2022) E 051
MMUPHin 0.0508 0.0858 |
: Bateh 50 0 50 10
i * AJUH

Application to an external dataset

¢ Boramae
* Paik
¢ SNUH
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A novel framework for microbial community meta-nalysis

* The meta-analysis framework developed for the study, MMUPHIin, has been
extensively evaluated and its performance for batch effect removal, supervised
meta-analysis of exposures and covariates, and unsupervised poluation structure
discovery validated on a variety of simulated microbial community types.

 |nthis seminar, we focused on the batch effect removal method, MMUPHin_Correct,
and applied them to external dataset (liver cancer dataset).

* |tshows moderate adjustment of the batch effects from its own dataset and as well
as the external dataset.

* While itis extended version of ComBat to microbiome analysis by considering zero-
inflation, it assumes the data to be zero-inflated Gaussian, which is only appropriate
for certain transformations of relative abundance data (i.e., taxon counts normalized
by each sample’s library size). Therefore, more flexible approaches are needed (Ling
et al., 2022)
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