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Meta-analysis for molecular epidemiology in large populations has seen 
great success in linking high-dimensional ‘omic features to complex health-
related phenotypes.

Image source:10.1016/j.gde.2013.09.003

One example of this is in Genome-wide association studies (GWAS [1]), 
where appropriate study scale, achieved by rigorous integration of 
multiple cohorts, has both facilitated reproducible discoveries (in the form 
of disease-associated loci[2-4]) and addressed confounding due to 
unobserved population structure [5].

🧬 Recap: GWAS aims to find the associations 
between genetic variations and observable trait

Inflammatory bowel disease (IBD, 염증성 
장질환) represent a particular success 
story for GWAS meta-analysis.

https://doi.org/10.1016/j.gde.2013.09.003
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What’s the problem?

Meta-analysis of microbial community profiles presents unique quantitative challenges 
relative to other types of ‘omics data such as GWAS [10] or gene expression [11]. 

These include particularly strong batch, inter-individual, and inter-population 
differences, and statistical issues including zero-inflation and compositionality [12,  13].

Consequently, methods to correct for cohort and batch effects from other ‘omics 
settings [14–17] are not directly appropriate

Introduction
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What’s the problem?

To date, there are no methods permitting the joint analysis of batch-corrected 
microbial profiles for most study designs.

In the absence of methods appropriate for large-scale microbial meta-analysis, it 
is unclear whether reproducible population structure in the microbiome, such as 
microbially driven IBD “subtypes”, exists to help explain the clinical heterogeneity of 
these conditions.

In this work, a uniform statistical framework for population-scale meta-analysis of 
microbiome data is introduced and validated

Introduction



7

💡 Population structure : This term generally refers to the 

composition of a community in terms of its constituent 

members. It means the different types of microorganisms 

present in a community, their relative abundances, and how 

they are organized or distributed.

A statistical framework for meta-analysis of microbial community profiles

MMUPHin, A collection of novel methods for meta-analysis of environmental exposures, 
phenotypes, and population structures across microbial community studies, specifically 
accounting for technical batch effects and interstudy differences (“Methods,” Fig. 1a).

💡 Meta-analysis?

Meta-analysis in this context likely involves synthesizing data 

from multiple studies to gain a more comprehensive 

understanding of the microbial population structure.

Fig 1. A method for large-scale microbial community 
meta-analysis and its application to inflammatory 
bowel disease Introduction
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Let’s say sample read count Y was modeled with respect to both batch variable and 
biologically relevant covariate(s) X:

𝑌!"# = exp 𝛽#𝑋!"$ + 𝜎 𝛾!# + 𝛿!#𝜖!"# ×𝐼!"# ,
where
• i indicates	batch/study
• j	indicates	sample	
• p	indicates	feature

MMUPHin_Correct – Batch and Study effect correction

MMUPHin (Meta-Analysis Methods with a Uniform Pipeline for Heterogeneity in
microbiome studies)

For microbial community batch correction, they extended the batch correction method 
developed for gene expression data in ComBat[15] with an additional component to 
allow for the zero-inflated nature of microbial abundance data.
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Let’s break down

𝑌!"# = exp 𝛽#𝑋!"$ + 𝜎 𝛾!# + 𝛿!#𝜖!"# ×𝐼!"# ,

The linear part of the model, 𝛽!𝑋"#$ + 𝜎 𝛾"! + 𝛿"!𝜖"#! , is the combination of effects from covariates, 
batch variable, random error. 
However, this linear combination can result in any real number, including negatives.

1) 
covariates

2)
batch variables

3)
random error

MMUPHin_Correct – Batch and Study effect correction
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Let’s break down

𝑌!"# = exp 𝛽#𝑋!"$ + 𝜎 𝛾!# + 𝛿!#𝜖!"# ×𝐼!"# ,

1) 
covariates

2)
batch variables

3)
random error

To ensure that the outcome (𝑌"#!) remains positive and interpretable in the context of count data, the 
linear predictor is placed inside an exponential function.
By using the exponential of a linear combination of variables, the model implicitly assumes that the 
count data follow a log-normal distribution, a common assumption for many types of biological 
data.

The linear part of the model, 𝛽!𝑋"#$ + 𝜎 𝛾"! + 𝛿"!𝜖"#! , is the combination of effects from covariates, 
batch variable, random error. 
However, this linear combination can result in any real number, including negatives.

MMUPHin_Correct – Batch and Study effect correction



Methods 12

Let’s break down

𝑌!"# = exp 𝛽#𝑋!"$ + 𝜎 𝛾!# + 𝛿!#𝜖!"# ×𝐼!"# ,

Covariate-specific coefficients

Batch-specific location and scale parameters

Independent error term following standard 
normal distribution.

𝜖!"#~𝑁(0,1)

A feature-specific standardization factor

MMUPHin_Correct – Batch and Study effect correction
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Let’s break down

𝑌!"# = exp 𝛽#𝑋!"$ + 𝜎 𝛾!# + 𝛿!#𝜖!"# ×𝐼!"# ,

Modelled with normal prior
𝛾!#~𝑁(𝑌! , 𝜏!

$) Modelled with inverse-gamma prior
𝛿!#~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(𝜆! , 𝜃!)

A binary (0,1) zero-count indicator, to 
allow for zero-inflation of features.

Hyperparameters (𝑌8 , 𝜏89, 𝜆8 , 𝜃8) are estimated with empirical Bayes estimators as in ComBat

MMUPHin_Correct – Batch and Study effect correction
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The posterior means, 𝛾8:
;∗ and 𝛿8:

;∗ , along with standard frequentist estimates ,𝛽: and .𝜎:
are used to provide batch-corrected count data:

0𝑌!"# = exp
𝑌!"# − 2𝛽#𝑋!"$ − 𝛾!#.∗ 3𝜎#

𝛿!#.∗
+ 2𝛽#𝑋!"$ ×𝐼!"# ,

where
• i indicates	batch/study
• j	indicates	sample	
• p	indicates	feature

MMUPHin_Correct – Batch and Study effect correction
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0𝑌!"# = exp
𝑌!"# − 2𝛽#𝑋!"$ − 𝛾!#.∗ 3𝜎#

𝛿!#.∗
+ 2𝛽#𝑋!"$ ×𝐼!"# ,

Let’s break down

Original sample read count data
𝑌!"# = exp 𝛽#𝑋!"

% + 𝜎 𝛾!# + 𝛿!#𝜖!"# ×𝐼!"#

The batch effect that needs to be adjusted.
By subtracting this from the original read count 𝑌!"#, 
the formula aims to remove the influence of batch-
specific variations

batch-specific scale parameter 𝛿!#
&∗

The difference (𝑌!"# − G𝛽#𝑋!"% − 𝛾!#&∗ ;𝜎#) is then scaled by the batch-
specific scale parameter 𝛿!#&∗ . 
This scaling adjusts the variance of the read counts, aligning 
them across different batches.

the covariate effects
After adjusting for batch effects and scaling, the 
covariate effects G𝛽#𝑋!"

% are added back. This 
ensures that the biological information encoded 
in the covariates is retained in the batch-
corrected data.

MMUPHin_Correct – Batch and Study effect correction
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In practice, the user provides 
- sample microbial abundance table(Y), 
- batch/study information, and 
- optionally any other covariates X that are potentially confounded 

with batch but encode important biological information.

Example R codes)

MMUPHin software [36] is available at Bioconductor.

MMUPHin_Correct – Batch and Study effect correction

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02753-4
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With this model specification, MMUPHin_Correct is expected to often reduce, 
rather than fully correct batch differences. 

This is because MMUPHin_Correct focuses on correcting non-zero abundance batch 
effects, and does not change features’ presence/absence across batches. 

MMUPHin_Correct – Batch and Study effect correction

0𝑌!"# = exp
𝑌!"# − 2𝛽#𝑋!"$ − 𝛾!#.∗ 3𝜎#

𝛿!#.∗
+ 2𝛽#𝑋!"$ ×𝐼!"#

A binary (0,1) zero-count indicator, to 
allow for zero-inflation of features.
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• “Correcting” a feature’s batch-specific presence to absence is inappropriate, as 
substantial non-zero read counts indicate biological presence rather than technical 
artifacts. 

• Imputing non-zero abundance for batch-specific absence is technically challenging 
in our linear modelling framework, as the per-sample/feature noise 𝜖8H: cannot be 
reliably inferred for inflated zero values. 

MMUPHin_Correct – Batch and Study effect correction
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• They collected and uniformly processed ten published 16S studies of the IBD gut 
microbiome totaling 2179 subjects and 5151 samples. 

• These studies range widely in terms of cohort designs and population characteristics, 
including 
§ recent-onset and established disease patients, 
§ cross-sectional and longitudinal sampling, 
§ pediatric and adult populations, 
§ diseases (CD and UC), 
§ treated and treatment-naive patients, 
§ biopsy and stool samples, and 
§ inclusion of healthy/non- IBD controls. 

• Covariates were manually curated to ensure consistency across studies (“Methods”).
• Major factors available from all or most studies included 

• demographics (age/sex/race), biogeography, disease location and/or extent, antibiotic 
usage, immunosuppression, and steroid and/or 5-ASA usage. 

Ten uniformly processed 16S rRNA gene sequencing studies of the IBD 
mucosal/stool microbiomes were used



Materials 21

Ten uniformly processed 16S rRNA gene sequencing studies of the IBD 
mucosal/stool microbiomes were used

(left , right) Table 1. Ten uniformly processed 16S rRNA 
gene sequencing studies of the IBD mucosal/stool 
microbiomes. 
For longitudinal cohorts, numbers in parentheses 
indicate baseline sample size.
For age, mean and standard error (parenthesized) are 
shown. Additional covariates are summarized in 
Additional file 3: Table S1 
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD 
mucosal/stool microbiomes were used

Fig 1b. MDS ordination of all microbial profiles (Bray-Curtis dissimilarity) before batch correction visualize the 
strongest associations with gut microbial composition, including disease, sample type (biopsy or stool), cohort 
(visualized separately for larger and smaller studies), and dominant phyla 

(1) Disease & sample type (2) Cohorts separated by sample sizes (3) Dominant phyla

• Microbiome differences associated with disease were notable even without normalization. 
• However, this can be misleading due to the confounding of cohort structure between studies, such as the differentiation 

between RISK (a predominantly mucosal study of CD) and PROTECT (a predominantly stool study of UC). 
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD 
mucosal/stool microbiomes were used

Fig 1b. MDS ordination of all microbial profiles (Bray-Curtis dissimilarity) before batch correction visualize the 
strongest associations with gut microbial composition, including disease, sample type (biopsy or stool), cohort 
(visualized separately for larger and smaller studies), and dominant phyla 

(1) Disease & sample type (2) Cohorts separated by sample sizes (3) Dominant phyla

• Inter-individual differences largely independent of population or disease, such as Bacteroidetes versus 
Firmicutes dominance, were also universal among studies and sample types as expected [9, 32]. 
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Ten uniformly processed 16S rRNA gene sequencing studies of the IBD 
mucosal/stool microbiomes were used

Fig 2a, b. MMUPHin_Correct is effective for covariate-adjusted batch effect reduction while maintaining 
the effect of positive control variables

• For panel a, PERMANOVA R2 statistics summarize the effect of batch and 
positive/negative control variables on the overall microbial composition, before 
and after batch correction.
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Liver cancer serum dataset
Approach Metagenome

Sample size 571

No. of OTUs 547

No. of batches 4

Batch effect source Institutions
(SNUH,AJUH,Paik, Borame)

Sample type Serum sample

Study design Cross-section study

Sequence region V3-V4

Datasets
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Application to liver cancer serum dataset

MDS plots 
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Application to liver cancer serum dataset

Methods
Dissimilarity

Bray-Curtis Aitchison

Before 
correction 0.0992 0.0899

Percentile-
Normalization 0.1812652 0.09898626

ConQur
(Ling et al., 2022)

0.0699 0.3336

MMUPHin 0.0508 0.0858

Before 
correction

Bray-curtis Aitchison

MMUPHin
_Correct

Results) PERMANOVA 𝑹𝟐 (left) and MDS plot (right)

https://www.nature.com/articles/s41467-022-33071-9
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A novel framework for microbial community meta-nalysis

• The meta-analysis framework developed for the study, MMUPHin, has been 
extensively evaluated and its performance for batch effect removal, supervised 
meta-analysis of exposures and covariates, and unsupervised poluation structure 
discovery validated on a variety of simulated microbial community types.

• In this seminar, we focused on the batch effect removal method, MMUPHin_Correct, 
and applied them to external dataset (liver cancer dataset).

• It shows moderate adjustment of the batch effects from its own dataset and as well 
as the external dataset.

• While it is extended version of ComBat to microbiome analysis by considering zero-
inflation, it assumes the data to be zero-inflated Gaussian, which is only appropriate 
for certain transformations of relative abundance data (i.e., taxon counts normalized 
by each sample’s library size). Therefore, more flexible approaches are needed (Ling 
et al., 2022)
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