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Introduction: Background

• Microbiome Research in Bioinformatics:
➢ Explores microorganisms in environments for new medical treatments.
➢ Crucial in understanding and treating complex diseases like diabetes, cancer, and 

allergies.
➢ Longitudinal studies reveal microbiome dynamics, aiding disease diagnosis and 

treatment.

• Challenge in Longitudinal Microbiome Studies:
➢ Uneven and varying number of time points for different subjects.
➢ Comprehensive analysis is difficult due to missing samples at some timepoints.
→ Results in a significant amount of unusable data (Ridenhour et al. 2017).
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Introduction: Existing methods

• Use of Generative Adversarial Networks (GANs):
➢ GANs proposed to address missing data in longitudinal studies.
➢ Widely adopted in fields like image synthesis and text generation.
➢ Effective for data augmentation, reducing overfitting in prediction/classification 

tasks.
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Introduction: Existing methods

• Innovations in GAN Applications:
➢ GAN combined with Recurrent Neural Network (RNN) for imputing missing 

multivariate time series data.
➢ Luo et al. (2018, 2019) used Gated Recurrent Unit (GRU) in GAN for modeling 

temporal irregularities and reconstructing incomplete datasets.
➢ Gupta and Beheshti (2020), Zhang et al. (2021) introduced bidirectional RNN and 

GRU with GAN for predictive classification and regression tasks.
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Introduction: Existing methods

• GAN-Based Approaches in Microbiome Data:
➢ MB-GAN for learning latent spaces and generating simulated microbial 

abundances (Rong et al. 2021).
➢ DeepBioGen for generating realistic human gut microbiome profiles and 

generalizing classifiers for type 2 diabetes (Oh and Zhang 2021).

➢ Current methods focus on single time point data augmentation; longitudinal data
imputation remains unaddressed.
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Introduction: Proposed method

• Method Overview:
➢ DeepMicroGen is a deep generative method specifically designed for 

longitudinal microbiome data.
➢ Utilizes multiple operational taxonomic units (OTUs) from the input dataset.

• Technical Features:
➢ Extracts features incorporating phylogenetic relationships between 

taxonomies.
➢ Uses Convolutional Neural Network (CNN) modules for feature extraction.
➢ Employs a bidirectional RNN-based GAN model.
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Introduction: Proposed method

• Functionality:
➢ Generates imputed values by learning temporal dependencies between 

observations at different time points.

• Performance and Advantages:
➢ Demonstrates the lowest mean absolute error (MAE) compared to standard 

baseline methods.
➢ Shows improved performance in simulated and real datasets.
➢ Enhances prediction performance for allergy outcomes by providing a 

complete longitudinal dataset through imputation.
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Introduction: Proposed method

• Illustration of DeepMicroGen
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Materials and Methods
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Materials and Methods: Preprocessing of longitudinal microbiome data

• Input Data:
➢ Uses species-level relative abundance (RA) 

profiles.
➢ RA profiles consist of real values in the range 

[0,1], representing species percentages of the 
total observed species.

• Data Transformation:
➢ Added a pseudo-count to zero values (minimum 

RA divided by two).
➢ Applied centered log ratio (clr) transformation.
→To account for compositionality.
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Materials and Methods: Data representation and preparation

• Taxa Number (𝒏): 
➢ Represents the count of different taxa in the dataset.

• Time Sequence 𝑻 = 𝒕𝟏, 𝒕𝟐, … , 𝒕𝒌 : 

➢ A sequence of time points, increasing in value, capturing the temporal aspect of 
the data.

• Observations 𝒙𝒊 in 𝑹
𝒏 : 

➢ These are the real-valued observations at each time 𝑡𝑖.
→Where 𝑥𝑖= 0 indicates a missing observation at time 𝑡𝑖.

• Matrix Representation (𝒙 = 𝒙𝟏, … , 𝒙𝒌 ∈ 𝑹𝒏∗𝒌): 
➢ Forms a matrix of all observations 𝑥𝑖, enabling analysis across multiple time 

points.
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Materials and Methods: Data representation and preparation

• Mask (𝑒 ∈ 0,1 𝑘): A binary mask where 𝑒𝑖 = 0 if x𝑖 is missing and 1 otherwise. 
→ This helps in identifying missing data points.

• Time Gap Vectors (𝛿𝑓 ∈ 𝑅𝑘): Represent the time lag between the current and 
previous values in the forward direction.

• 𝛿𝑏 (Backward Time Gap): Similar to 𝛿𝑓 but calculated in the reverse direction, 
reflecting time differences with the next observed value.
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Materials and Methods: CNN module

• Capture Phylogenetic Relationship: 
➢ Features are extracted to represent the evolutionary relationships among taxa 

using CNN modules.
• Clustering and Correlation Measurement: 
➢ OTUs are divided into clusters based on phylum. Within each cluster, the 

Spearman rank correlation between OTUs is computed, forming a matrix.
• Geometric Mean Calculation: 
➢ For each row in the Spearman rank coefficient matrix, the geometric mean of 

correlation coefficients is calculated using the formula:

→Where 𝜌𝑂𝑇𝑈𝑗𝑝 is the Spearman correlation between 𝑂𝑇𝑈𝑗 and 𝑂𝑇𝑈𝑝.
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Materials and Methods: CNN module

• Sorting for CNN Input: OTUs are sorted by the geometric mean of 
correlation coefficients, setting up for effective feature capture by the CNN.

• CNN Module Configuration: Comprises two 1D-CNN layers with specific kernel sizes 
and filters, each followed by Leaky ReLU activation and a max-pooling layer.
→ Extracted features from each cluster were concatenated and transferred to the 
biRNN module
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Materials and Methods: Bi-directional RNN module

• Functionality: Captures both forward and backward temporal 
relations between observations.

• RNN Configuration: Utilizes a one-layer biRNN with tanh activation and a fully 
connected layer.

• RNN Cell Definition: The RNN cell is defined by the equation:

→Where 𝑊ℎ and 𝑊ℎ
′ are weight matrices, 𝑏ℎ is the bias, and ℎ𝑖−1 is the previous 

time point's hidden state
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Materials and Methods: Output Generation and Combination

• Forward and Backward Outputs: Two outputs ( 𝑥𝑓, 𝑥𝑏) are generated, 

representing imputed values from both directions.
• The outputs are weighted by combination factors 𝜆𝑓, 𝜆𝑏 calculated as:

→ These factors, based on time gaps, modulate the influence of the forward and 
backward outputs.
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Materials and Methods: Handling actual and imputed values

• Final Output: 
➢ The final output matrix 𝑥 is calculated as a weighted sum of the forward and 

backward outputs:  ҧ𝑥 = 𝛿𝑓 𝑥𝑓 + 𝜆𝑏 𝑥𝑏 .
➢ This matrix is of size n ∗ 𝑘, corresponding to the number of taxa and time points.

• If actual values exist in the input data, they replace the corresponding generated 
output in the final imputation.

• The final imputation output x is calculated as:

ҧ𝑥 = 𝑥 ⊙ 𝑒 + 𝑥 ⊙ (1 − 𝑒)
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Materials and Methods: Generator and losses

• During training phase, the generator was trained to minimize the loss 
composed of three different losses:

• Classification Loss (𝑙𝑜𝑠𝑠𝐺):
➢ Represents the classification loss where the generator is trained to maximize the 

probability 𝐷( ҧ𝑥 ⊙ 1 − 𝑒 ) that the discriminator 𝐷 classifies the fake instances 
as actual values.
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Materials and Methods: Generator and losses

• Reconstruction Loss (𝑙𝑜𝑠𝑠𝑅):
➢ Aims to ensure the generated output 𝑥𝑖 is close to the actual values (𝑥𝑖).

➢ Calculated as the sum of absolute errors between actual and generated values 
across all time points:

• Consistency Loss (𝑙𝑜𝑠𝑠𝐶):
➢ Minimizes the difference between the imputed outputs from the forward and 

backward directions of the biRNN.
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Materials and Methods: Discriminator architecture and function

• Structure of Discriminator (𝐷): 
➢ One-layer RNN module
➢ long short-term memory (LSTM) cells (10 units) 
➢ tanh (hyperbolic tangent) activation function.

• Output Processing and Tasks: 
• Two separate feed-forward neural networks take 

RNN outputs for different tasks:
➢ First Network Tasks: Classifies inputs as real or 

generated (sigmoid function).
➢ Second Network Tasks: Predicts the time point for 

each value (softmax function).
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Materials and Methods: Discriminator architecture and function

• The discriminator is trained to optimize two losses combined as:

• Binary cross-entropy loss (𝑙𝑜𝑠𝑠𝐷): 
➢ Measures the discriminator's ability to correctly identify actual and generated 

values.

• Cross entropy loss (𝑙𝑜𝑠𝑠𝑇): 
➢ Measures the discriminator’s ability to correctly predict the time point of each 

sample
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Materials and Methods: Training and optimization of DeepMicroGen

• DeepMicroGen was trained with the adaptive optimization algorithm Adam with a 
learning rate of 10−3.

• Implemented a dropout rate of 0.7 in CNN layers to enhance model robustness.

• DeepMicroGen was built using the Tensorflow library (Version 1.8.0). 
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Results
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Results: Real and simulated datasets

• Real Study Datasets:
➢ DIABIMMUNE dataset (16S rRNA): 1064 samples from 133 subjects across 

Finland, Estonia, and Russia, focusing on type 1 diabetes and allergies. Samples 
collected at specific months post-birth.

➢ BONUS-CF dataset (WGS): 452 samples from 113 subjects with cystic fibrosis. 
Includes whole genome shotgun sequencing data.

• Simulated Datasets:
➢ Based on DIABIMMUNE dataset, simulating 200 subjects. Added noise to OTUs to 

create variability.
➢ Followed the longitudinal microbiome simulation approach from Sharma and Xu 

(2021) & ensured total RAs add up to one in simulations.
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Results: Imputation methods for comparison

• Imputation Methods for Comparison:

➢ Simple imputation: Mean, Median.
➢ Time-series imputation: Linear curve fitting, cubic curve fitting, moving-window-

based (window-size=3).
➢ Longitudinal dataset methods: Multiple imputation by chained equations (MICE), 

last observation carried forward (LOCF).

• Performance Evaluation:
➢ Mean Absolute Error (MAE) for missing samples using clr-transformed real and 

imputed values.
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Results: Imputation evaluation
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• Performance comparison of DeepMicroGen with the baseline methods based on 10-
fold cross validation.



Results: Imputation evaluation
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• Performance comparison of DeepMicroGen with the baseline methods based on 10-
fold cross validation.

1.866 1.609 0.486



Results: Effectiveness of each component in DeepMicroGen 
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• To see the effect of different components on imputation performance, evaluated the 
different component of DeepMicroGen 
➢ RNN (eliminates both the discriminator and the CNN-based feature extraction)

➢ biGAN (removes the CNN-based feature extraction)

➢ AE+biGAN (replaces the CNN with the autoencoder)

➢ MDeep+biGAN (replaces the CNN with the features encoding the phylogenetic 
correlation based on the method presented in MDeep)

• Performed 10-fold cross-validation using the DIABIMMUNE dataset and the average 
MAE was measured for performance evaluation .



Results: Effectiveness of each component in DeepMicroGen 
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• Average MAE results under different neural network architectures for imputation 
performing 10-fold cross-validation



Results: Effect of different data missing rates and mechanisms
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• To examine how the imputation performance changes with different missing rates, 
they randomly discarded 10%–80% of the samples considering them as missing and 
performed data imputation using DeepMicroGen.

➢ The experiment was repeated five times, and the average MAE was calculated. 

• To investigate whether DeepMicroGen could outperform the other methods for all 
cases, the performance of the baseline methods was also measured.



Results: Effect of different data missing rates and mechanisms
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• Imputation performance results with different missing rates for DeepMicroGen and 
other baseline methods



Results: Effect of different data missing rates and mechanisms
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• Imputation performance results based on the average MAE for different missing data 
mechanisms using DIABIMMUNE and BONUS-CF dataset.

DIABIMMUNE dataset

BONUS-CF dataset



Results: Effect of different data missing rates and mechanisms

• Average MAE results from bi-directional and unidirectional RNN-based 
DeepMicroGen with different missing data mechanism.



Results: Preserving characteristics of missing samples
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• Objective: To address whether the imputed RA profiles preserve similar 
characteristics to the original samples, they randomly selected 10% of the data 
considering them as missing.

• Dataset: DIABIMMUNE & BONUS-CF datasets

• Methodology: Performed imputation with DeepMicroGen and baseline methods.

• Performance Evaluation: 
1. Comparing alpha-diversity (Shannon index) of real vs. imputed data.
2. Measuring beta-diversity using Bray-Curtis distance.
→ Visualizing differences with NMDS.



Results: Preserving characteristics of missing samples
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• Comparison of alpha-diversity based on Shannon index measured from real samples 
and imputation output from DeepMicroGen and other baseline methods.



Results: Preserving characteristics of missing samples
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• Beta-diversity visualization using NMDS for the real samples and imputation output 
from DeepMicroGen and other baseline methods.



Results: Preserving characteristics of missing samples
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• Pearson correlation coefficients between the alpha-diversity and beta-diversity of 
real samples and the imputation output from each method.

Alpha-diversity

Beta-diversity



Results: Disease prediction improvement
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• Objective: To examine if DeepMicroGen-based imputation enhances disease 
prediction accuracy.

• Dataset: DIABIMMUNE dataset with 141 infants' clinical data on egg, milk, and 
peanut allergies.

• Methodology: Built a one-layer LSTM neural network for each allergy prediction.

• Performance Evaluation: Measured Area Under Curve (AUC) for allergy outcome 
predictions.



Results: Disease prediction improvement
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• Average AUC results for the allergy outcome predictions of the classifier trained with 
the addition of the 25 imputed subjects using different methods, repeating 5-fold 
cross-validations five times.



Results: Comparison with other Deep Learning models:
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• Average MAE results for longitudinal microbiome data imputation with 
DeepMicroGen and Gao et al. performing 10-fold cross-validation.

• Imputation performance results based on the average MAE for different missing data 
mechanism.



Discussion
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Discussion: Overview

45

• DeepMicroGen Overview:
➢ A GAN-based model for imputing longitudinal microbiome data.
➢ Utilizes CNN for feature extraction and biRNN for generating imputed 

datasets.
➢ Discriminator differentiates between actual and imputed values and 

predicts the timepoint.

• Performance Evaluation:
➢ Tested against baseline methods using both simulated and real-study 

datasets.
➢ Showed lowest average MAE, outperforming other methods.
➢ Demonstrated robust imputation performance.



Discussion: Limitation and extensions
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• Limitation of DeepMicroGen:
➢ Assumes uniform time intervals between samples, may not perform well 

with irregular intervals.
➢ Requires a sufficient number of samples per time point for effective 

training.

• Potential Extensions:
➢ Methodology could be adapted for other omics datasets, like RNA-seq and 

DNA methylation data.
➢ Requires specific training and optimization for each omics data type.



Thank you
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Supplementary

• Missingness:

➢ MCAR: Probability of missingness is independent of the data. 

➢ MAR: Probability of missingness is independent of the missing values given the 
observed data. (but it is related to some of the observed data.)

➢ MNAR: MNAR occurs when the missingness is directly related to the values of the 
missing data itself.
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Supplementary

• Alpha diversity: Diversity within ecological units or habitats

• Beta diversity: Differences in diversity between habitats
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Supplementary

• Shannon Index: Measure of diversity in a community. It considers both the 
abundance and evenness of the species present.

→Where 𝑝𝑖 is the proportion of samples belonging to 𝑖𝑡ℎ species in the dataset.

• Bray-Curtis: Used to represent how different in terms of abundance

→Where 𝑛𝑖1 and 𝑛𝑖2 are the counts of species 𝑖 in the first and second community
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H = −

𝑖=0

𝑠

𝑝𝑖 ln 𝑝𝑖

𝐵𝐶 =
∑ 𝑛𝑖1 − 𝑛𝑖2
∑ 𝑛𝑖1 + 𝑛𝑖2
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