# DeepMicroGen: a generative adversarial network-based method for longitudinal microbiome data imputation

Joung Min Choi<sup>1</sup>, Ming Ji<sup>2</sup>, Layne T. Watson<sup>3</sup>, Liqing Zhang<sup>1,\*</sup>

BIBS Seminar 24/02/01 Hanbyul Song



Bioinformatics, 2023, 39(5), btad286 https://doi.org/10.1093/bioinformatics/btad286 Advance access publication 26 April 2023

Original Paper

OXFORD

#### Genome analysis

# DeepMicroGen: a generative adversarial network-based method for longitudinal microbiome data imputation

Joung Min Choi 💿 <sup>1</sup>, Ming Ji<sup>2</sup>, Layne T. Watson<sup>3</sup>, Liqing Zhang<sup>1,\*</sup>

<sup>1</sup>Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, United States <sup>2</sup>College of Nursing, University of South Florida, Tampa, FL 33620, United States <sup>3</sup>Departments of Computer Science, Mathematics, and Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, United States

\*Corresponding author. Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA. E-mail: lqzhang@cs.vt.edu (L.Z.) Associate Editor: Valentina Boeva

#### Contents

- 1 Introduction
- 2 Materials & Methods
- 3 **Results**
- 4 **Discussion**

## Introduction

#### Introduction: Background

- Microbiome Research in Bioinformatics:
  - > Explores microorganisms in environments for new medical treatments.
  - Crucial in understanding and treating complex diseases like diabetes, cancer, and allergies.
  - Longitudinal studies reveal microbiome dynamics, aiding disease diagnosis and treatment.
- Challenge in Longitudinal Microbiome Studies:
  - > Uneven and varying number of time points for different subjects.
  - > Comprehensive analysis is difficult due to missing samples at some timepoints.
    - $\rightarrow$  Results in a significant amount of unusable data (Ridenhour et al. 2017).

#### Introduction: Existing methods

- Use of Generative Adversarial Networks (GANs):
  - > GANs proposed to address missing data in longitudinal studies.
  - > Widely adopted in fields like image synthesis and text generation.
  - Effective for data augmentation, reducing overfitting in prediction/classification tasks.



#### Introduction: Existing methods

- Innovations in GAN Applications:
  - GAN combined with Recurrent Neural Network (RNN) for imputing missing multivariate time series data.
  - Luo et al. (2018, 2019) used Gated Recurrent Unit (GRU) in GAN for modeling temporal irregularities and reconstructing incomplete datasets.
  - Gupta and Beheshti (2020), Zhang et al. (2021) introduced bidirectional RNN and GRU with GAN for predictive classification and regression tasks.

#### Introduction: Existing methods

- GAN-Based Approaches in Microbiome Data:
  - MB-GAN for learning latent spaces and generating simulated microbial abundances (Rong et al. 2021).
  - DeepBioGen for generating realistic human gut microbiome profiles and generalizing classifiers for type 2 diabetes (Oh and Zhang 2021).
  - Current methods focus on single time point data augmentation; longitudinal data imputation remains unaddressed.

#### Introduction: Proposed method

- Method Overview:
  - DeepMicroGen is a deep generative method specifically designed for longitudinal microbiome data.
  - > Utilizes multiple operational taxonomic units (OTUs) from the input dataset.

#### Technical Features:

- Extracts features incorporating phylogenetic relationships between taxonomies.
- > Uses Convolutional Neural Network (CNN) modules for feature extraction.
- > Employs a **bidirectional RNN-based GAN** model.

#### Introduction: Proposed method

• Functionality:

Generates imputed values by learning temporal dependencies between observations at different time points.

#### • Performance and Advantages:

- Demonstrates the lowest mean absolute error (MAE) compared to standard baseline methods.
- > Shows improved performance in **simulated** and **real datasets**.
- Enhances prediction performance for allergy outcomes by providing a complete longitudinal dataset through imputation.

Introduction: Proposed method

• Illustration of DeepMicroGen



## **Materials and Methods**

Materials and Methods: Preprocessing of longitudinal microbiome data

- Input Data:
  - Uses species-level relative abundance (RA) profiles.
  - RA profiles consist of real values in the range [0,1], representing species percentages of the total observed species.
- Data Transformation:
  - Added a pseudo-count to zero values (minimum <sup>Subject</sup> RA divided by two).
  - > Applied **centered log ratio (clr)** transformation.
    - $\rightarrow$  To account for compositionality.



Center-log-ratio transformed Longitudinal microbiome dataset Materials and Methods: Data representation and preparation

• Taxa Number (*n*):

Represents the count of different taxa in the dataset.

- Time Sequence  $(T = (t_1, t_2, ..., t_k))$ :
  - A sequence of time points, increasing in value, capturing the temporal aspect of the data.
- Observations  $(x_i \text{ in } \mathbb{R}^n)$ :
  - $\succ$  These are the real-valued observations at each time  $t_i$ .

 $\rightarrow$  Where  $x_i = 0$  indicates a missing observation at time  $t_i$ .

- Matrix Representation  $(x = (x_1, ..., x_k) \in \mathbb{R}^{n * k})$ :
  - Forms a matrix of all observations x<sub>i</sub>, enabling analysis across multiple time points.

Materials and Methods: Data representation and preparation

Mask (e ∈ {0,1}<sup>k</sup>): A binary mask where e<sub>i</sub> = 0 if x<sub>i</sub> is missing and 1 otherwise.
 → This helps in identifying missing data points.

 $e_i = \begin{cases} 0, & \text{if } x_i \text{ is missing,} \\ 1, & \text{otherwise,} \end{cases}$ 

• Time Gap Vectors ( $\delta^f \in \mathbb{R}^k$ ): Represent the time lag between the current and previous values in the forward direction.

$$\delta_i^f = \begin{cases} t_i - t_{i-1}, & \text{if } e_{i-1} = 1, i > 1, \\ \delta_{i-1}^f + t_i - t_{i-1}, & \text{if } e_{i-1} = 0, i > 1, \\ 0, & \text{if } i = 1. \end{cases}$$

•  $\delta^b$  (Backward Time Gap): Similar to  $\delta^f$  but calculated in the reverse direction, reflecting time differences with the next observed value.

Materials and Methods: CNN module



- Capture Phylogenetic Relationship:
  - Features are extracted to represent the evolutionary relationships among taxa using CNN modules.
- Clustering and Correlation Measurement:
  - OTUs are divided into clusters based on phylum. Within each cluster, the Spearman rank correlation between OTUs is computed, forming a matrix.
- Geometric Mean Calculation:
  - For each row in the Spearman rank coefficient matrix, the geometric mean of correlation coefficients is calculated using the formula:

$$\rho_{\text{OTU}_j} = \sqrt[p]{|\rho_{\text{OTU}_{j1}} \cdot \rho_{\text{OTU}_{j2}} \cdot \ldots \cdot \rho_{\text{OTU}_{jp}}|}, \quad 1 \leq j \leq p,$$

→ Where  $\rho_{OTU_{jp}}$  is the Spearman correlation between  $OTU_j$  and  $OTU_p$ .

Materials and Methods: CNN module

- Sorting for CNN Input: OTUs are sorted by the geometric mean of correlation coefficients, setting up for effective feature capture by the CNN.
- CNN Module Configuration: Comprises two 1D-CNN layers with specific kernel sizes and filters, each followed by Leaky ReLU activation and a max-pooling layer.
  → Extracted features from each cluster were concatenated and transferred to the biRNN module



Materials and Methods: Bi-directional RNN module

- Functionality: Captures both forward and backward temporal relations between observations.
- **RNN Configuration:** Utilizes a one-layer biRNN with tanh activation and a fully connected layer.
- **RNN Cell Definition:** The RNN cell is defined by the equation:

 $h_i = \tanh(W_h h_{i-1} + W'_h x_i + b_h)$ 

→ Where  $W_h$  and  $W'_h$  are weight matrices,  $b_h$  is the bias, and  $h_{i-1}$  is the previous time point's hidden state



Materials and Methods: Output Generation and Combination

- Forward and Backward Outputs: Two outputs  $(\tilde{x}_f, \tilde{x}_b)$  are generated, representing imputed values from both directions.
- The outputs are weighted by combination factors  $\lambda_f$ ,  $\lambda_b$  calculated as:

$$\lambda^{f} = \exp(-f_{\lambda}(W_{\lambda^{f}}\delta^{f} + b_{\lambda^{f}})), \\ \lambda^{b} = \exp(-f_{\lambda}(W_{\lambda^{b}}\delta^{b} + b_{\lambda^{b}})),$$

→ These factors, based on time gaps, modulate the influence of the forward and backward outputs.



Materials and Methods: Handling actual and imputed values

- Final Output:
  - > The final output matrix x is calculated as a weighted sum of the forward and backward outputs:  $\bar{x} = \delta^f \tilde{x}^f + \lambda^b \tilde{x}^b$ .
  - $\succ$  This matrix is of size n \*k, corresponding to the number of taxa and time points.
- If actual values exist in the input data, they replace the corresponding generated output in the final imputation.
- The final imputation output x is calculated as:

$$\bar{x} = x \odot e + \tilde{x} \odot (1 - e)$$

Materials and Methods: Generator and losses

- During training phase, the generator was trained to minimize the loss composed of three different losses:

$$loss_{generator} = loss_G + loss_R + loss_C$$

- **Classification Loss (***loss*<sub>*G*</sub>**)**:
  - ➤ Represents the classification loss where the generator is trained to maximize the probability  $D(\bar{x} \odot (1 e))$  that the discriminator D classifies the fake instances as actual values.

$$loss_G = -log(D(\overline{x} \odot (1-e)))$$

Materials and Methods: Generator and losses

- **Reconstruction Loss (** $loss_R$ **)**:
  - $\succ$  Aims to ensure the generated output  $(\tilde{x}_i)$  is close to the actual values  $(x_i)$ .

$$\log_{R} = \sum_{i=1}^{k} \|(x_{\cdot i} - \tilde{x}_{\cdot i})e_{i}\|_{1} / \|e\|_{1}$$

- Calculated as the sum of absolute errors between actual and generated values across all time points:
- **Consistency Loss (***loss*<sub>*C*</sub>**)**:
  - Minimizes the difference between the imputed outputs from the forward and backward directions of the biRNN.

$$\log_{C} = \frac{1}{k} \sum_{i=1}^{k} \|\tilde{x}_{\cdot i}^{f} - \tilde{x}_{\cdot i}^{b}\|_{1}$$

Materials and Methods: Discriminator architecture and function

- Structure of Discriminator (*D*):
  - One-layer RNN module
  - Iong short-term memory (LSTM) cells (10 units)
  - > tanh (hyperbolic tangent) activation function.
- Output Processing and Tasks:
  - Two separate feed-forward neural networks take RNN outputs for different tasks:
  - First Network Tasks: Classifies inputs as real or generated (sigmoid function).
  - Second Network Tasks: Predicts the time point for each value (softmax function).





Materials and Methods: Discriminator architecture and function

• The discriminator is trained to optimize two losses combined as:

 $loss_{discriminator} = loss_D + loss_T$ 

- **Binary cross-entropy loss (***loss*<sub>D</sub>**)**:
  - Measures the discriminator's ability to correctly identify actual and generated values.

$$loss_D = -log(D(\overline{x} \odot e)) - log(1 - D(\overline{x} \odot (1 - e)))$$

- Cross entropy loss (loss<sub>T</sub>):
  - Measures the discriminator's ability to correctly predict the time point of each sample

$$\log_T = -\sum_{i=1}^k y(i) \log(\hat{y}(i)),$$



Materials and Methods: Training and optimization of DeepMicroGen

- DeepMicroGen was trained with the adaptive optimization algorithm Adam with a learning rate of  $10^{-3}$ .
- Implemented a **dropout rate** of 0.7 in CNN layers to enhance model robustness.
- DeepMicroGen was built using the Tensorflow library (Version 1.8.0).

# Results

**Results:** Real and simulated datasets

- Real Study Datasets:
  - DIABIMMUNE dataset (16S rRNA): 1064 samples from 133 subjects across Finland, Estonia, and Russia, focusing on type 1 diabetes and allergies. Samples collected at specific months post-birth.
  - BONUS-CF dataset (WGS): 452 samples from 113 subjects with cystic fibrosis. Includes whole genome shotgun sequencing data.

#### • Simulated Datasets:

- Based on DIABIMMUNE dataset, simulating 200 subjects. Added noise to OTUs to create variability.
- Followed the longitudinal microbiome simulation approach from Sharma and Xu (2021) & ensured total RAs add up to one in simulations.

**Results:** Imputation methods for comparison

- Imputation Methods for Comparison:
  - Simple imputation: Mean, Median.
  - Time-series imputation: Linear curve fitting, cubic curve fitting, moving-windowbased (window-size=3).
  - Longitudinal dataset methods: Multiple imputation by chained equations (MICE), last observation carried forward (LOCF).
- Performance Evaluation:
  - Mean Absolute Error (MAE) for missing samples using clr-transformed real and imputed values.

#### **Results:** Imputation evaluation

• Performance comparison of DeepMicroGen with the baseline methods based on 10-fold cross validation.



#### **Results:** Imputation evaluation

• Performance comparison of DeepMicroGen with the baseline methods based on 10-fold cross validation.



**Results:** Effectiveness of each component in DeepMicroGen

- To see the effect of different components on imputation performance, evaluated the different component of DeepMicroGen
  - > **RNN** (eliminates both the discriminator and the CNN-based feature extraction)
  - biGAN (removes the CNN-based feature extraction)
  - > **AE+biGAN** (replaces the CNN with the autoencoder)
  - MDeep+biGAN (replaces the CNN with the features encoding the phylogenetic correlation based on the method presented in MDeep)
- Performed 10-fold cross-validation using the **DIABIMMUNE dataset** and the average MAE was measured for performance evaluation .

**Results:** Effectiveness of each component in DeepMicroGen

• Average MAE results under different neural network architectures for imputation performing 10-fold cross-validation

| Dataset    | RNN   | biGAN | MDeep+biGAN | AE+biGAN | DeepMicroGen |
|------------|-------|-------|-------------|----------|--------------|
| DIABIMMUNE | 1.672 | 1.662 | 1.884       | 2.759    | 1.609        |
| BONUS-CF   | 0.535 | 0.521 | 0.559       | 0.732    | 0.474        |

The best performance value for each experiment was bolded.

 To examine how the imputation performance changes with different missing rates, they randomly discarded 10%–80% of the samples considering them as missing and performed data imputation using DeepMicroGen.

> The experiment was repeated five times, and the average MAE was calculated.

• To investigate whether DeepMicroGen could outperform the other methods for all cases, the performance of the baseline methods was also measured.

• Imputation performance results with different missing rates for DeepMicroGen and other baseline methods



• Imputation performance results based on the **average MAE** for different missing data mechanisms using **DIABIMMUNE** and **BONUS-CF** dataset.

| DIABIMMUNE data  | set   |       | MAR   |       |       |       |       | MNAR  |       |       |  |  |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Missing rate     | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   |  |  |
| DeepMicroGen     | 1.600 | 1.663 | 1.755 | 1.784 | 1.741 | 1.654 | 1.623 | 1.676 | 1.752 | 1.765 |  |  |
| MICE             | 1.832 | 1.857 | 1.820 | 1.812 | 1.810 | 1.823 | 1.821 | 1.810 | 1.809 | 1.829 |  |  |
| Cubic            | 1.841 | 1.868 | 1.835 | 1.825 | 1.818 | 1.837 | 1.829 | 1.818 | 1.823 | 1.842 |  |  |
| Linear           | 1.876 | 1.900 | 1.870 | 1.869 | 1.866 | 1.870 | 1.863 | 1.869 | 1.873 | 1.865 |  |  |
| Mean             | 1.852 | 1.937 | 1.891 | 1.976 | 1.902 | 1.925 | 1.915 | 1.907 | 1.941 | 1.912 |  |  |
| Median           | 1.834 | 1.964 | 1.873 | 1.997 | 1.902 | 1.924 | 1.932 | 1.908 | 1.944 | 1.925 |  |  |
| Moving window    | 1.788 | 1.861 | 1.834 | 1.908 | 1.798 | 1.855 | 1.857 | 1.869 | 1.893 | 1.818 |  |  |
| LOCF             | 1.969 | 2.058 | 2.089 | 2.148 | 1.993 | 2.077 | 2.087 | 2.072 | 2.077 | 2.012 |  |  |
| BONUS-CF dataset |       |       | MAR   |       |       | MNAR  |       |       |       |       |  |  |
| Missing rate     | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   |  |  |
| DeepMicroGen     | 0.488 | 0.491 | 0.478 | 0.478 | 0.493 | 0.461 | 0.463 | 0.491 | 0.502 | 0.509 |  |  |
| MIĈE             | 0.524 | 0.538 | 0.555 | 0.536 | 0.535 | 0.523 | 0.525 | 0.542 | 0.557 | 0.543 |  |  |
| Cubic            | 0.642 | 0.651 | 0.659 | 0.643 | 0.651 | 0.623 | 0.629 | 0.656 | 0.668 | 0.652 |  |  |
| Linear           | 0.687 | 0.693 | 0.701 | 0.688 | 0.695 | 0.666 | 0.674 | 0.700 | 0.710 | 0.696 |  |  |
| Mean             | 0.690 | 0.696 | 0.704 | 0.693 | 0.700 | 0.669 | 0.676 | 0.704 | 0.713 | 0.699 |  |  |
| Median           | 0.499 | 0.508 | 0.526 | 0.503 | 0.502 | 0.499 | 0.490 | 0.512 | 0.530 | 0.527 |  |  |
| Moving window    | 0.491 | 0.495 | 0.531 | 0.508 | 0.510 | 0.480 | 0.471 | 0.513 | 0.516 | 0.525 |  |  |
| LOCF             | 0.512 | 0.503 | 0.532 | 0.525 | 0.514 | 0.480 | 0.461 | 0.516 | 0.519 | 0.523 |  |  |

• Average MAE results from bi-directional and unidirectional RNN-based DeepMicroGen with different missing data mechanism.

|                                  | MAR   |       |       |       |       | MNAR  |       |       |       |       | MCAR  |       |       |       |       |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Missing rate                     | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   |
| DeepMicroGen<br>(bi-directional) | 1.600 | 1.663 | 1.755 | 1.784 | 1.741 | 1.654 | 1.623 | 1.676 | 1.752 | 1.765 | 1.573 | 1.589 | 1.616 | 1.642 | 1.741 |
| DeepMicroGen<br>(unidirectional) | 1.635 | 1.676 | 1.777 | 1.821 | 1.764 | 1.662 | 1.697 | 1.702 | 1.768 | 1.773 | 1.635 | 1.676 | 1.677 | 1.721 | 1.764 |

DIAMIMMUNE dataset

BONUS-CF dataset

|                                  |       | MAR   |       |       | MNAR  |       |       |       |       | MCAR  |       |       |       |       |       |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Missing rate                     | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   |
| DeepMicroGen<br>(bi-directional) | 0.488 | 0.491 | 0.478 | 0.478 | 0.493 | 0.461 | 0.463 | 0.491 | 0.502 | 0.509 | 0.443 | 0.475 | 0.476 | 0.470 | 0.505 |
| DeepMicroGen<br>(unidirectional) | 0.490 | 0.492 | 0.496 | 0.486 | 0.527 | 0.488 | 0.484 | 0.493 | 0.519 | 0.539 | 0.461 | 0.474 | 0.485 | 0.485 | 0.518 |

- Objective: To address whether the imputed RA profiles preserve similar characteristics to the original samples, they randomly selected 10% of the data considering them as missing.
- **Dataset**: DIABIMMUNE & BONUS-CF datasets
- Methodology: Performed imputation with DeepMicroGen and baseline methods.
- Performance Evaluation:
  - 1. Comparing **alpha-diversity** (Shannon index) of real vs. imputed data.
  - 2. Measuring **beta-diversity** using Bray-Curtis distance.
    - $\rightarrow$  Visualizing differences with NMDS.

• Comparison of **alpha-diversity** based on Shannon index measured from real samples and imputation output from DeepMicroGen and other baseline methods.



• **Beta-diversity** visualization using NMDS for the real samples and imputation output from DeepMicroGen and other baseline methods.



• Pearson correlation coefficients between the **alpha-diversity** and **beta-diversity** of real samples and the imputation output from each method.

| Alpha diversity        |                |                 | -              | -               |                 |                 |                |                |
|------------------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|----------------|----------------|
| Dataset                | DeepMicroGen   | Mean            | Median         | MICE            | Linear          | Cubic           | LOCF           | MW             |
| DIABIMMUNE<br>BONUS-CF | 0.641<br>0.698 | 0.344<br>-0.271 | 0.410<br>0.263 | 0.329<br>-0.277 | 0.399<br>-0.273 | 0.326<br>-0.287 | 0.133<br>0.136 | 0.217<br>0.204 |

#### **Beta-diversity**

Alpha-diversity

| Dataset    | DeepMicroGen | Mean  | Median | MICE  | Linear | Cubic | LOCF  | MW     |
|------------|--------------|-------|--------|-------|--------|-------|-------|--------|
| DIABIMMUNE | <b>0.364</b> | 0.336 | 0.334  | 0.338 | 0.321  | 0.320 | 0.262 | 0.309  |
| BONUS-CF   | 0.210        | 0.067 | -0.009 | 0.026 | 0.263  | 0.147 | 0.099 | -0.048 |

**Results:** Disease prediction improvement

- **Objective:** To examine if DeepMicroGen-based imputation enhances disease prediction accuracy.
- **Dataset**: DIABIMMUNE dataset with 141 infants' clinical data on egg, milk, and peanut allergies.
- **Methodology:** Built a one-layer LSTM neural network for each allergy prediction.
- **Performance Evaluation:** Measured Area Under Curve (AUC) for allergy outcome predictions.

**Results:** Disease prediction improvement

 Average AUC results for the allergy outcome predictions of the classifier trained with the addition of the 25 imputed subjects using different methods, repeating 5-fold cross-validations five times.

| Allergy | w/o Imp |              | With imputation |        |       |        |       |       |       |  |  |  |  |
|---------|---------|--------------|-----------------|--------|-------|--------|-------|-------|-------|--|--|--|--|
|         |         | DeepMicroGen | Mean            | Median | MICE  | Linear | Cubic | LOCF  | MW    |  |  |  |  |
| Milk    | 0.566   | 0.605        | 0.589           | 0.589  | 0.556 | 0.550  | 0.585 | 0.584 | 0.563 |  |  |  |  |
| Egg     | 0.556   | 0.638        | 0.542           | 0.550  | 0.553 | 0.590  | 0.552 | 0.535 | 0.514 |  |  |  |  |
| Peanut  | 0.512   | 0.612        | 0.559           | 0.511  | 0.515 | 0.487  | 0.483 | 0.565 | 0.508 |  |  |  |  |

**Results:** Comparison with other Deep Learning models:

• Average MAE results for longitudinal microbiome data imputation with DeepMicroGen and Gao et al. performing 10-fold cross-validation.

| Dataset    | DeepMicroGen | Gao et al. |
|------------|--------------|------------|
| DIABIMMUNE | 1.609        | 3.267      |
| BONUS-CF   | 0.474        | 1.011      |

 Imputation performance results based on the average MAE for different missing data mechanism.

|            |              |       |       | MAR   |       |       | MNAR  |       |       |       |       |  |
|------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Dataset    | Missing rate | 30%   | 40%   | 50%   | 60%   | 70%   | 30%   | 40%   | 50%   | 60%   | 70%   |  |
| DIABIMMUNE | DeepMicroGen | 1.600 | 1.663 | 1.755 | 1.784 | 1.741 | 1.654 | 1.623 | 1.676 | 1.752 | 1.765 |  |
|            | Gao et al.   | 3.320 | 3.230 | 3.277 | 3.215 | 3.313 | 3.335 | 3.241 | 3.165 | 3.319 | 3.249 |  |
| BONUS-CF   | DeepMicroGen | 0.488 | 0.491 | 0.478 | 0.478 | 0.493 | 0.461 | 0.463 | 0.491 | 0.502 | 0.509 |  |
|            | Gao et al.   | 1.036 | 0.977 | 1.103 | 1.014 | 0.997 | 0.982 | 0.984 | 1.016 | 1.051 | 0.999 |  |

# Discussion

#### **Discussion:** Overview

#### • DeepMicroGen Overview:

- > A GAN-based model for imputing longitudinal microbiome data.
- Utilizes CNN for feature extraction and biRNN for generating imputed datasets.
- Discriminator differentiates between actual and imputed values and predicts the timepoint.

#### • Performance Evaluation:

- Tested against baseline methods using both simulated and real-study datasets.
- Showed lowest average MAE, outperforming other methods.
- Demonstrated robust imputation performance.

**Discussion:** Limitation and extensions

- Limitation of DeepMicroGen:
  - Assumes uniform time intervals between samples, may not perform well with irregular intervals.
  - Requires a sufficient number of samples per time point for effective training.

#### • Potential Extensions:

- Methodology could be adapted for other omics datasets, like RNA-seq and DNA methylation data.
- > Requires specific training and optimization for each omics data type.

Thank you

#### **Supplementary**

- Missingness:
  - > MCAR: Probability of missingness is independent of the data.
  - MAR: Probability of missingness is independent of the missing values given the observed data. (but it is related to some of the observed data.)
  - MNAR: MNAR occurs when the missingness is directly related to the values of the missing data itself.

#### **Supplementary**

• Alpha diversity: Diversity within ecological units or habitats



• Beta diversity: Differences in diversity between habitats



#### Supplementary

• Shannon Index: Measure of diversity in a community. It considers both the abundance and evenness of the species present.

$$\mathbf{H} = -\sum_{i=0}^{S} p_i \ln p_i \qquad p_i = \frac{n_i}{N}$$

 $\rightarrow$  Where  $p_i$  is the proportion of samples belonging to  $i^{th}$  species in the dataset.

• **Bray-Curtis:** Used to represent how different in terms of abundance

$$BC = \frac{\sum |n_{i1} - n_{i2}|}{\sum (n_{i1} + n_{i2})}$$

 $\rightarrow$  Where  $n_{i1}$  and  $n_{i2}$  are the counts of species *i* in the first and second community