Manual


(1) Make score file.

java -jar calsc.jar [covariate & phenotype file] [output score file] [logistic/linear]
ex) java -jar calsc.jar covphe.txt score_file.txt logistic


(2) Run GWAS-GMDR (CPU version)

gwasgmdr --in [input file] --out [output file] --order [order] --cv [cv fold] --measure [measure] --top [result top] --score [score file]
ex) gwasgmdr --in sample.txt --out result.csv --order 2 --cv 10 --measure ba --top 1000 --score score_file.txt


If you don't define '--score' option, this gwasgmdr works as MDR not GMDR.
ex) gwasgmdr --in sample.txt --out result.csv --order 2 --cv 10 --measure ba --top 1000


(3) Run GWAS-GMDR (GPU version)

1) Make binarized data file
    GMDRconverter [input data file] [output binarized file]
    ex) GMDRconverter sample.mdr sample.bin

2) Run GWAS-GMDR (GPU version)
    gwasgmdr --in [input binarized file] --out [output result file] --thread [#threads] --block [#block] --gpu [#gpu] --order [order] --cv [cv fold] --measure [measure] --top [result top] --score [score file]
    ex) cuGwam --in sample.bin --out result.csv --thread 440 --block 150 --gpu 3 --order 2 --cv 10 --measure ba --top 1000 --score score_file.txt


[Parameter]



Example Data

  1. Covariates and phenotype file : covphe.txt

  2. SNP size 10, Sample size 5000 : marker_10.txt

  3. SNP size 100, Sample size 5000 : marker_100.txt

  4. SNP size 1000, Sample size 5000 : marker_1k.txt