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High throughput sequencing technology in transcriptomics studies contribute to the understanding of 

gene regulation mechanism and its cellular function, but also increases a need for accurate statistical 

methods to assess quantitative differences between experiments. Many methods have been developed 

to account for the specifics of count data: non-normality, a dependence of the variance on the mean, 

and small sample size. Among them, the small number of samples in typical experiments is still a 

challenge. Here we present a method for differential analysis of count data, using conditional 

estimation of local-pooled dispersion parameters. A comprehensive evaluation of our proposed 

method in aspect of differential gene expression analysis using both simulated and real data sets 

describes that the proposed method is more powerful than other existing methods while controlling 

the false discovery rates. By introducing conditional estimation of local pooled dispersion parameters, 

we successfully overcome the limitation of small power and enable a powerful quantitative analysis 

focused on differential expression test with the small number of samples. 

Keywords: Differential expression test; RNA-Seq analysis; Local pooled dispersion estimation; Small 
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1.   Background 

There is considerable interest in biomedical research with high dynamic range and low 

background expression level accuracy in sequencing technology, such as RNA-Sequencing 

(RNA-Seq). To take advantage of RNA-Seq, a statistical method that is accurate and robust 

to a small number of sample size is required [1]. Specifically, knowing the differential 

transcription regulation pattern lies at the heart of many aspects of biomedical research and 

it is therefore desirable to understand its differential regulation patterns from a small 

number of samples, in typical RNA-Seq experiments as much as possible.  

Many attempts, to improve our understanding of transcriptional difference between 

groups of interests, have been made by pooling information across genes while assuming 

similarity of dispersion (or variance) of different genes. Since Robinson and Smyth first 

introduced the negative binomial (NB) distribution to model a count structure of SAGE 

data [2], numerous NB-based models have been developed for RNA-Seq. edgeR assumed 

one common dispersion parameter that is common throughout the genes [3], while DESeq 

incorporated two parameters under the assumption of different per-gene dispersion [4]. 

Using shrinkage estimation of dispersions and log fold changes, Love et. al. developed 

DESeq2 (as an extension of DESeq) to improve stability and interpretability of the 

estimates [5]. There also have been other approaches assuming different distributions, such 

as Poisson [6] and log-normal [7]. In addition to these parametric approaches, Bayesian 

approaches [8, 9] and non-parametric approaches [6, 10] were proposed to statistically 

detect the changes in expression between treatment and control groups. 

Many methods adopt an approach of pooling across genes to overcome the limitation 

of small sample data analysis. Specifically, by exploiting the assumption of similarity of 

the dispersions of different genes measured in the same experiment, the dispersion 

parameter is estimated from such information shared across genes. A number of review 

papers reported, however, that a majority of these methods are limited by their poor 

performance when the sample size is small [1, 11, 12]. Thus there still remains a need for 

a powerful method that takes into account the properties of small samples with more 

caution. 

In this paper we apply the idea of using local pooled error [13] and conditional 

likelihood method [2] together to develop a new statistical analysis method, called 

conditional estimation of local pooled dispersion parameter for RNA-Seq data or cLPD-

seq which performs with stability when using small samples. Our method shares 

information over genes in each pre-defined local bin and makes a smoothing curve in order 

to stabilize dispersion estimation in small samples. We demonstrate the advantages of our 

method by analyzing simulated datasets and apply it to real RNA-Seq data 

2.   Materials and Methods 

2.1.   Preliminaries 

Let ijy denote the observed count for class i  and library j  for a single gene. Here we 

assume a two-class comparison so that 1, 2i   and for a given i , 1,..., ij n  which is 
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required to be a natural number greater than or equal to 1. Since the results from 

comprehensive reviews indicate that the negative binomial (NB) modeling of RNA-Seq 

data performs relatively better than others, we model the gene counts 
ijy  as NB distributed, 

 ~ ( , )ij ij i ijY NB m    (1) 

where ϕ is the dispersion parameter and [ ]ij ijE y   and
2[ ]ij ij ijVar y     . Let 

i  

denote the library size (or sequencing depth) and let 
ijm  be the true abundance of a gene of 

interest and the library size of sample j  in class i , respectively. 

2.2.   Common dispersion estimation 

We incorporate a common dispersion model developed by Robinson and Smyth [2], which 

uses all genes to estimate a common dispersion (ϕ) of SAGE data. The conditional 

likelihood for a gene is formed by conditioning on the sum of counts for each class. If the 

library size ijm  is equal within each class, the conditional log-likelihood for ϕ of a gene g, 

given 
1

in

i ijj
Y Y
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where ( )n  denotes the Gamma function, which is related to the factorial by 

( ) ( 1)!n n   . The common dispersion estimator maximizes the common likelihood 

1
( ) ( )

G

C gg
l l 


  where G is the number of genes. A quantile adjustment can be used to 

adjust for unequal library sizes, as is done in [2, 14]. 

2.3.   Gene-wise dispersion estimation 

The common dispersion assumption offers significant stabilization, compared to gene-wise 

estimation, especially with small samples [14]. However, this assumption that each gene 

has the same dispersion is not likely. Therefore, we suggest a ‘local common dispersion’ 

assumption, similarly suggested by others in microarray data analysis [13, 15]. We state 

our gene-wise dispersion parameter estimation strategy through local-bin estimation as 

follows. 

(1) Evaluate average value of each gene across the samples, 1( ,..., ,..., )g GA A AA . Here 

A  and gA  respectively denote the mean vector and the mean of gene g . 

(2) Define q number of local bins using two different binning approaches: q-equal-

frequency and q-equal-space (q = 100 and binning = equal-space as default). In equal-

frequency mode, quantiles of A are evaluated and used to define local bins, while an 

equal-spaced distance, (max( A )-min( A ))/q, is used to define local bins in equal-

space approach. 
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(3) Place the genes into the bins where their average values belong to. 

(4) For each bin k (where k=1,…,q), find the common dispersion estimator ˆ
k  which 

maximizes 
Cl .  

(5) Generating a smoothing curve (using local regression, or LOESS) with q number of 

ˆ
k  estimates. Note that other smoothing techniques can be applied. 

(6) Gene-wise dispersion is estimated via interpolation method on this curve. 

 

Note that two different binning approaches in step 2 might affect estimation of dispersion. 

Hence we computed the smoothing curves of both cases and compared the performances 

(see Fig. 1 for typical estimated curves). 

2.4.   Statistical testing 

For DE test of small sample RNA-Seq data, we adopted the exact test used in edgeR, 

developed by Robinson and Smith [14]. For two-class comparisons, the count values of 

genes under the null of no difference are identically distributed, leading to known 

distributions of the within-condition count totals for each gene. Also, the sum of the total 

gene counts over all libraries has a known distribution. Let 
1Y  and 

2Y  be the sum of counts 

for class 1 and 2, respectively, over the number of libraries, 
1n  and 

2n . An exact test 

similar to the Fisher’s exact test for contingency tables can be constructed by replacing the 

hypergeometric probabilities with NB. Conditioning on the total count-sum, 
1 2Y Y , which 

is also an NB variable, the probability of observing class totals at least as extreme as the 

Fig. 1.  Comparison of dispersion parameter estimation. Tag-wise estimates (based on weighted likelihood 

method in edgeR) and Local bin estimates (proposed method) are depicted in grey and black colour, 

respectively. X-axis and Y-axis represent average log-transformed counts per million (CPM) and estimated 

dispersion parameter values. 
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observed can be calculated, resulting in the exact p-value for differential expression. We 

used the R function implemented in edgeR. 

2.5.   Data sets 

For a practical comparison of the methods, we analyzed both simulated data from Love et 

al. [5] and publicly available real data which had been preprocessed and distributed by 

Recount [16]. Brief characteristics of each dataset is introduced below. 

 

 Simulated dataset (6, 8, 10, and 20 samples): Love et al. [5] used real data-based 

simulated dataset to benchmark a number of methods. Based on the reproducible code 

in [5], we generated simulated dataset. Briefly, 10 000 genes were randomly selected 

and samples were generated from NB distribution. Among those genes, 80% were 

generated from the null hypothesis, while the remaining 20% were generated from the 

alternative hypotheses having different fold changes (FC) between classes: 2 and 4 FC. 

The directions of FC were randomly assigned. The mean and dispersion values for this 

simulation were drawn from Pickrell et al. [17].  

 Hapmap dataset (60 samples in normal condition): Montgomery et al. [18] performed 

sequencing the mRNA fraction of the transcriptome of hymphoblastoid cell lines 

(LCLs) from 60 CEU (HapMap individuals of European descent) individuals to 

understand the quantitative difference in gene expression within a human population. 

 Gilad group dataset (6 samples): Gilad group [19] performed comparative studies to 

assess intra- and interspecies variation in gene regulatory processes. They used RNA-

seq to study transcript levels in humans, chimpanzees, and rhesus macaques, using 

liver RNA samples from three males and three females from each species. 

 Fly dataset (10 samples): Graveley et al. [20] studied 30 distinct developmental stages 

in Drosophila melanogaster using RNA-Seq, tiling microarrays and cDNA 

sequencing. Here we selected a part of the RNA-Seq experimental results with 10 

samples in two different developmental stages. 

2.6.   Method comparison 

We compared our proposed method with edgeR [3, 21], DESeq [4], and DESeq2 [5] based 

on the review report of best performance of NB-based method in small sample studies [1, 

11]. We also included non NB-based methods: voom [7] which assumes normality of log-

transformed counts, and SAMseq [6] which is a non-parametric method. The Benjamini–

Hochberg procedure was used to adjust multiple testing problem [22]. Transcripts were 

reported as DE at an adjusted p-value threshold of 0.1. We compared true positive rate 

(TPR, or sensitivity) and false positive rate (FPR, or 1-specificity) defined as the number 

of true DE transcripts detected divided by the number of true DE transcripts and the number 

of false DE transcripts detected divided by the number of non-DE transcripts, respectively. 

In most cases, we ran the programs using the settings provided in the supplementary 

material of [1]. 
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3.   Results and discussion 

3.1.   Local binning improves estimation of small sample NB dispersion 

Estimation of dispersion parameter is a crucial step for differential expression analysis. 

Here, we compared bin-wise estimation and gene-wise estimation by studying an example 

of a single bin consisting of 10 hypothetical genes with the same dispersion value but with 

different means. We set the means of 10 genes from 1 to 10 and fixed the dispersion 

parameter ϕ=1. Using this hypothetical dataset, we compared two different estimation 

strategies (bin-wise estimation and average of gene-wise estimation) in terms of mean 

squared error (MSE). Since we set the ϕ=1, MSE is defined as,  

  
10 2

1

1 ˆ 1
10

i

i

MSE 


   (3) 

To incorporate the effect of sample size in estimation performance, we varied the 

number of samples from 4 (2 in each condition) to 40 (20 in each condition). As can be 

seen in the Table 1 and Fig. 2, bin-wise estimates showed smaller MSEs. The distribution 

of MSEs indicated that bin-wise estimation provides more robust and accurate estimation 

of dispersion parameters in general (Fig. 2 and Table 1). Thus we used bin-wise local 

estimation in developing our proposed method. 

Fig. 2.  Comparison of local estimation. The distribution of MSEs over 100 simulations under six different sample 

sizes. Each simulation is comprised of sampling of 10 transcripts with different mean and a constant ϕ=1/3. Bin-
wise local estimation and average of 10 gene-wise estimates were compared. Comparison of methods: simulation 

study 
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Table 1. Comparison of bin-wise and gene-wise estimation. 

The number of samples MSE (Bin-wise estimation) MSE (Average of gene-wise estimation) 

4 0.0419 0.2092 

6 0.0192 0.0351 

8 0.0124 0.0177 

10 0.0091 0.0137 

20 0.0048 0.006 

40 0.0024 0.0031 

 

3.2.   Comparison of methods: simulation study 

The variance in NB model is a function of the mean and the dispersion parameter. 

Thus the performance of a statistical test largely depends on both parameters. To show that 

Fig. 3.  Methods comparison using simulated data analysis. X- and Y-axis represent sensitivity and 1-

specificity, respectively. Different fold change (FC) and sample sizes were plotted. Seven methods were 
applied and denoted by different shapes and colours. DE calls were made with the same criteria as was 

used in Love et al  (BH-adjusted p-value < 0.1). 
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improvements in estimation of dispersion parameter can affect the performance of DE 

analysis, we repeated a subset of the simulation study of Love et al. [5].The simulation in 

Love et al. considered Fig. 3 shows the plot of sensitivity vs 1-specificity plot, where DE 

analysis was performed using a criterion of Benjamini-Hochberg adjusted P-value < 0.1 in 

accordance with Love et al. [5].  We compared our proposed methods, cLPD-seq (the 

equidistance binning approach) and cLPD-seq-quantile (the quantile binning approach), to 

five other competing methods. 

The first situation considered an extreme case: with small effect size (2 fold change) 

and a small sample (3 per each group). In this situation, DESeq2 performed the best, but 

all methods performed poorly with a seriously low power of less than 20%. Except for the 

extreme case above, cLPD-seq showed the highest power in all comparisons, as well as the 

highest 1-specificity (or equivalently false positive rate) less than or about 4% (red triangle 

in Fig 3). We see that using local-bin estimation with the equidistant mode results in the 

highest power on average in most of cases, with accessible false positive rates. 

3.3.   Application to real RNA-Seq data 

We applied the proposed method cLPD-seq to the RNA-Seq datasets: Montgomery et al. 

[18] and Gilad et al. [19]. We did not use cLPD-seq-quantile to due to their poor 

performance in simulation studies. We compared the results of our proposed method only 

with edgeR, DESeq, DESeq2, and voom. SAMseq was excluded in comparison because of 

its lower power in small sample analysis.  

To assess how well the methods control for the false positive rates, we artificially 

constructed two groups from the multiple samples with the same condition in Montgomery 

et al’s dataset. More specifically, we randomly selected 6 samples out of 27 male samples 

then performed DE analysis as if they were from two different groups. We repeated these 

Fig. 4.  Methods comparison using real data analysis. Performance of each method was considered 

using mock comparison of HapMap CEU samples in the same condition (left) and two-group 

comparison of sex-different samples (right). The number in parenthesis indicates the total number 
of DE transcript each method identified. 
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steps 100 times. Note that no significant detections were expected in these mock 

comparisons. All methods well conserved the proportion of false detection to less than 5%. 

DESeq2 detected the least number of DE transcripts (average about 5). Though cLPD-seq 

showed a slightly higher proportion of false detection, an average of 1.2%, it is an 

acceptable rate (Fig. 4 left). voom showed the largest proportion of false detection and the 

largest variability. When we increased the sample size (sample size of 5), the results were 

similar (data not shown). 

Gilad et al’s dataset [19] consists of liver RNA samples from three males and three 

females. A majority of the methods detected few or even no DE transcripts, except our 

proposed cLPD-seq method and voom. The number of total DEGs identified by cLPD-seq 

and voom were 55 and 39, respectively (Fig. 4). Interestingly there was no overlap between 

these two methods. To interpret the findings biologically, we performed gene set 

enrichment analysis using DAVID [23]. The number of DEGs identified by edgeR, DESeq 

and DESeq2 was 9, 0 and 1, respectively, and no gene set was enriched with these lists. 

Gene ontology (GO) analysis for the 55 DEGs identified by the proposed cLPD-seq 

reported six significant biological processes (FDR < 10%). Among enriched terms, female 

characteristic-related terms, i.e. response to estradiol stimulus (FDR = 0.6%) and response 

to estrogen stimulus (FDR = 4.5%) were identified. On the other hand, the GO analysis for 

the DEGs identified by voom, did not provide any significant biological processes. This 

simple application of male and female dataset demonstrates that our cLPD-seq provides 

more reasonable result than voom. 

It is also interesting to evaluate how well the methods perform on small subsamples. It 

is reasonable to assume that the larger dataset gives more reliable results, leading them to 

be used as an underlying truth. Based on this idea, we performed DE analyses with 

subsamples taken from the original total samples and compared the results to the 

underlying truth. This so-called ‘overlapping’ analysis can be conducted with either all 

significant genes (likely to be thousands of) or a part of them (top k significant genes). For 

the latter, a ranking-invariant constraint is incorporated into the comparison by assuming 

that the top ranked genes should be more enriched in any robust methods. Also it is much 

easier to interpret the result and to carry out a follow-up study with a small number of genes. 

We performed the both analyses and repeated 10 times to evaluate whether the results from 

different subsamples agree with each other.  

The results with all significant genes and top 200 significant genes are respectively 

shown in left and right of Fig 5. The overall performance with all DEGs were comparable 

for five methods. The number of DEGs, as well as the proportion of overlaps, identified by 

DESeq, and DESeq2 were slightly lower compared to cLPDseq, edgeR and voom with all 

DEGs (left in Fig 5). The proposed method, cLPDseq, edgeR, and voom showed similarly 

performed better than the others regardless of the number of samples, but varied with 

different subsamples except edgeR with extremely small samples. In the case of sample 

size = 2, the average proportions (standard deviation) of cLPDseq, edgeR, DESeq, DESeq2, 

and voom are 0.762 (0.0662), 0.769 (0.02362), 0.663 (0.08888), 0.575 (0.08147), and 0.754 

(0.08307) in order. Unlike the result with all DEGs, the overlap proportions with the top 
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200 genes were quite distinct. With decreased number of samples, DESeq and voom 

showed poor overlap proportion. The overlap proportions of cLPDseq and edgeR were 

superior to others in both analyses, showing robust performance of these methods. Note 

that the number of incorporated genes is increased, the overlaps of each method is also 

increased.  

4.   Conclusion 

To assess the significance of expression changes between different classes, estimation of 

dispersion parameter is critical. For RNA-Seq data, the models based on NB distribution 

assumption have been well studied and their superior performance to other approaches 

have been successfully demonstrated. Nonetheless, for data with a small number of 

replication, the lack of power was a limitation. (Nonetheless, data with a small number of 

replication always suffer from the lack of power.) We have integrated a local pooling idea 

into a common dispersion estimation idea by using conditional likelihood estimation for 

local pooled dispersion parameters in RNA-Seq data. 

In our analyses using both simulation and real data application, it seemed as though 

estimation using local bins worked well in practice, adjusting the dispersion parameter 

estimation more closely and robustly to the true value and thus improving DE detection 

power. Note that the method showed robust results (similar DE performance) with different 

binning approach and different number of bins (data not shown). However, there are 

several issues requiring some further investigation: choosing an optimal number of bins 

and a proper smoothing curve. For future studies, these issues should be dealt more 

Fig. 5.  Reproducibility and stability of methods. Overlap proportion with all DEGs (left) and top 
200 DEGs (right) are shown. X and Y axis represent the number of samples in each condition and 

the proportion of DEGs overlapped with the result with total samples, respectively. The analysis was 

repeated 10 times with randomly selected subsamples for a specific sample size per each method, 
distinguished by colour. The numbers in parenthesis represent the number of DEGs identified with 

the total samples. 
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rigorously. A reproducible code, datasets, and supplementary figures will be found in web-

site (http://bibs.snu.ac.kr/software/cLPDseq) 
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