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1. Introduction 

The LPEseq is an R package for performing differential expression (DE) test with RNA sequencing data. 

Briefly, LPEseq extends local pooled error method, which was developed for microarray data analysis, to 

sequencing data even with non-replicated sample in each condition. A number of methods are available for both 

count-based and FPKM-based RNA-Seq data. Among these methods, few (for example, EdgeR and DESeq) can 

deal with no replicate data, but not accurately. LPEseq was designed for the RNA-Seq data with a small number 

of replicates, especially with non-replicate in each class. Also LPEseq can be equally applied both count-base 

and FPKM-based (non-count values) input data. This brief vignette is written for the users who want to use the 

LPEseq for their DE analysis. An extended documentation about the method can be found in our original 

manuscript (http://bibs.snu.ac.kr/software/LPEseq). 

2. Installation 

The source code and a package of LPEseq are freely available from our website (It will be soon available from 

Bioconductor). You can use it by loading source code in our website, 

> source("http://bibs.snu.ac.kr/software/LPEseq/LPEseq.R") 

> install.packages("local_folder/LPEseq_version.tar.gz", repos=NULL, 

type="source") 

3. What’s in LPEseq 

The LPEseq package comes with a number of functions to perform a differential expression test with 

or without replicates. The main functions are LPEseq.normalise() and LPEseq.test(), which 

are designed for running a normalization across the samples and a whole differential expression test, 

respectively. All the functions that start with the same as the package are newly developed in our 

method while others are from original LPE package. The most of the functions are described in the 

manual available in our web-site. 

4. Quick Example 

A. Input Data: generation 

mailto:iedenkim@gmail.com


The LPEseq package starts its analysis with read counts. Therefore you have to equip yourself with 

RNA-Seq read count data sets on your hand first. The package expects count data in the form of a 

matrix (or a vector) of integer values. But it is not limited to non-count data, for example, FPKM 

values generated using Cufflinks. If you are not familiar with generating count table, please visit web-

sites to learn how to obtain such a data. Good references are GenomicRanges in Bioconductor, htseq-

count script written in Python framework, the well-known software and etc. In this LPEseq tutorial, 

you do not need count dataset right away. Using generateData(), you can generate simulated 

datasets and learn how to use LPEseq library without real dataset. 

Now you are ready to generate the simulation datasets by typing 

> set.seed(5) 

> simData <- generateData(n.rep=3, n.deg=1000) 

Let us take a look at the data generated using generateData() function. 

> head(simData) 

condition1.1 condition1.2 condition1.3 condition2.1 condition2.2 condition2.3 DEG 

gene_1         1299          541         1109            0            0            0   1 

gene_2            0            0            0            0            0            0   0 

gene_3            0            0            0            0            0            0   0 

gene_4           26           39           41           27           36           31   0 

gene_5            0            0            0            0            0            0   0 

gene_6            0            0            0            0            0            0   0 

The output of generated data consists of 20000 genes with 6 samples (three replicate per each 

condition) and differential expression index in the last column (denoted by DEG). DEGs are indexed 

with 1 otherwise 0. 

If you have your own data, you can directly read the data with read.table().Once you loaded your 

own data, the following analysis procedure is the same.  

> yourData <- read.table("your_data.txt", header = , sep = , …) 

To visualize mean and variance of the data, LPEseq provides AVplot() function. 

> par(mfrow=c(1,2)) 

> AVplot(simData[,1:3]) 

> AVplot(simData[,1:3], logged=F) 



 
Figure 1 Variance versus mean intensity plot with original intensity (left) and normalized 

intensity (right) 

B. Normalization 

As the first step of analysis, we need to remove the effect of sequencing depth. LPEseq follows the 

similar idea of DESeq. LPEseq divides each column of the count table by the size factor for this 

column. By doing so, the count values are brought to a common comparable scale. LPEseq adds 

pseudo-count value 1 to all the values in the data and take log-2 transformation. Because of sparse 

properties in average bins of RNA-Seq in raw scale, it is recommended to log-2 transform the original 

data. LPEseq does this by typing 

> simData.norm <- LPEseq.normalise(simData[,-7]) 

Note that DEG index is removed. If your own data consists of original count values, exactly the same 

script will do, 

> youData.norm <- LPEseq.normalise(yourData) 

But when your data includes normalized count values, such RPKM or FPKM, just take log-

transformation to your data for further analyses. We recommend using log-transformed data for 

LPEseq method. 

> youData.norm <- log(yourData, base = 2) 

C. Testing Differential Expression 

LPEseq provides simple one-step procedure to perform differential expression test. Unlike other 

methods, LPEseq is applicable to experiments without replicates. By simply providing expression 

matrix (or vector) per each condition as arguments of LPEseq.test() function, LPEseq 

automatically performs appropriate differential expression test, if the input data is properly given. 

Replicates are essential to interpret biological experiments. Nevertheless, experiments without any 

replicates per each condition are frequently undertaken, and LPEseq can deal with them. The 

followings are the R scripts for differential expression test with or without replicates in each 

condition, respectively. 

> sim.result <- LPEseq.test(simData.norm[,1:3], simData.norm[,4:6]) 



> sim.result.norep <- LPEseq.test(simData.norm[,1], simData.norm[,4]) 

The result of LPEseq.test includes average values in each condition, pooled standard deviation, Z type 

statistics, nominal p-value and adjusted p-value (with Benjamini-Hochberg multiple testing 

correction). 

> head(sim.result) 

mu.x     mu.y pooled.std.dev    z.stats   p.value   q.value 

gene_1 10.149991 0.000000       1.020765 -9.9435183 0.0000000 0.0000000 

gene_2  0.000000 0.000000       1.273648  0.0000000        NA        NA 

gene_3  0.000000 0.000000       1.273648  0.0000000        NA        NA 

gene_4  5.299016 4.973103       0.804995 -0.4048625 0.6855786 0.9063719 

gene_5  0.000000 0.000000       1.273648  0.0000000        NA        NA 

gene_6  0.000000 0.000000       1.273648  0.0000000        NA        NA 

> head(sim.result.norep) 

mu.x     mu.y pooled.std.dev     z.stats      p.value      q.value 

gene_1 10.353526 0.000000       1.715027 -6.03694650 1.570578e-09 2.843468e-08 

gene_2  0.000000 0.000000       2.185038  0.00000000           NA           NA 

gene_3  0.000000 0.000000       2.185038  0.00000000           NA           NA 

gene_4  4.763784 4.847599       1.082377  0.07743624 9.382765e-01 9.961941e-01 

gene_5  0.000000 0.000000       2.185038  0.00000000           NA           NA 

gene_6  0.000000 0.000000       2.185038  0.00000000           NA           NA 

To save the output to a file, use the write.table() function. 

> write.table(sim.result, file="result_file.txt", quote=F, sep="\t") 

5. How LPEseq works? 

Since LPEseq.test() directly performs differential expression calling without additional steps, it 

would be worth describing how LPEseq.test() works. LPEseq first counts the number of input 

data column. If the number of column is larger than 1, LPEseq estimates LPE variance curve exactly 

the same way in original LPE method using lpe.var(). However, if the number of column is equal 

to 1, then LPEseq estimates LPE variance curve after performing the outlier-removing step using 

LPEseq.var().  

> sim.var <- lpe.var(simData.norm[,1:2], n.bin=100, df=10) 

> sim.var.norep <- LPEseq.var(simData.norm[,1:2], n.bin=100, df=10, d=3, 

fudge.factor=1) 

> head(sim.var) 

A     var.M 

gene_1 9.706107 0.5613424 

gene_2 0.000000 3.1211790 

gene_3 0.000000 3.1211790 

gene_4 5.031400 0.5846971 

gene_5 0.000000 3.1211790 

gene_6 0.000000 3.1211790 

> names(sim.var.norep) 



[1] "x"        "y"        "w"        "yin"      "data"     "lev"      "cv.crit"  "pen.crit" "crit"     

[10] "df"       "spar"     "lambda"   "iparms"   "fit"      "call" 

> par(mfrow=c(1,2)) 

> plot(sim.var) 

> plot(sim.var.norep$x, sim.var.norep$y) 

 

Figure 2 Comparison of LPE curve without replicates (left) and with replicates (right) 

As can be seen in Fig. 2, LPE curve can be obtained from RNA-Seq data both with replicates and 

without replicates. But when working without any replicates, LPEseq.var() conducts an extra 

outlier-removing step. By removing these (possibly differentially expressed) genes or transcripts, the 

remaining genes can be thought as in the same condition. For this purpose LPEseq needs the extra 

argument, d, the expression difference between two different conditions. The default value is 1.2 (in 

log-2 transformed scale). Thus any genes or transcript whose expression difference between 

conditions is larger than 1.2 is depicted as outliers and is removed for evaluating LPE curve. This can 

be changed according to the data type. If the data is thought to be largely varied, like biological 

replicates do, the value can be larger. For the technical replicates, it is recommended to use 0.5 (please 

see supplementary note). 

Once LPE curve is obtained, it is straightforward to estimate gene-specific variance from the curve. 

> LPEseq.predict.var(5.342, sim.var.norep) 

[1] 0.5418984 

Then p-value of differential expression can be obtained from z-type statistics as described in the 

manuscript 

> var.x <- LPEseq.predict.var(5.342, sim.var.norep) 

> var.y <- LPEseq.predict.var(6.012, sim.var.norep) 

> std.dev <- sqrt(var.x + var.y) 

> z.stats <- (6.012-5.342)/std.dev 

> p.val <- as.numeric(2*(1-pnorm(abs(z.stats)))) 

> p.val 

[1] 0.5253698 

6. Session Info 



> sessionInfo() 

R version 3.0.1 (2013-05-16) 

Platform: i386-w64-mingw32/i386 (32-bit) 

 

locale: 

[1] LC_COLLATE=Korean_Korea.949  LC_CTYPE=Korean_Korea.949    LC_MONETARY=Korean_Korea.949 

[4] LC_NUMERIC=C                 LC_TIME=Korean_Korea.949     

 

attached base packages: 

[1] stats     graphics  grDevices utils     datasets  methods   base 

 

 


